

CENTRONICS

 PRINTER

BUFFER NOISE GATE

THE TRUTH ABOUT
THE JOB MARKET
AUDIOPSUDESIGN
ALLABOUT
DIODES

AUDIO PSU DESIGN

DECODINGIC NUMBERS

Gary Herman: Editor
Ian Pitt: Assistant Editor
Jerry Fowler: Technical Illustrator
Paul Stanyer: Ad. Manager
Caroline Faulkner:
Classified Sales Executive
Kerry Fowler: Copy Control
Dave Bradshaw: Group Editor

- Electronics

Peter Welham: Publishing Director
Jim Connell: Chairman
PUBLISHED BY
Argus Specialist Publications Lid
1 Golden Square, London W1R 3AB.
DISTRIBUTED BY
Argus Press Sales \& Distribution Lid
12-18 Paul Street, London EC2A 4JS
(British Isles)
TYPESET BY:
Design International
PRINTED BY:
The Garden City Press Lid
COVERS DESIGNED BY:
MM Design \& Print.
COVERS PRINTED BY
Alabaster Passmore.

Member of the
 Member of the Audit Bureau
 Audit Bureau

Electionles Today is normally published on the firse Fet day in the month preceding coverdate. The contents of this publication including all articles, designs, plans. drawings and programs and all copyright and other in. tellectual property rights therein belong to Argus Specialist Publications Limited. All rights conferred by the Law of Copyright and other intellectual property rights and by virtue of international copyright conven.
tions are specifically reserved to Argus Specialist Publicationstimited and anv reproduction reoulres the prior written consent of the Company. (C) 1985 Argus Specialist Publications Lid L All reasonable care is taken in the preparation of the magazine contents, but the publishers cannot be held legaliv responsible for errors. Where mistakes do occur, a correction will normaily be published as soon as possible afterwards. All prices and data contalined in advertisements are ac cepied by us in good faith as correct at time of going to held responsible however for any variations affecting price or availability which may occur atter the publication has closed for press
E Subscription Rates. UK $£ 16.30$ including postage. For further details and Airmail rates etc, see the Readers' Services page.

EDITORIAL AND ADVERTISEMENT OFFICE

1 Golden Square, London W1R 3AB. Telephone 01-437 0626. Telex 8811896.

FEATURES

DIGEST

7TOBIE O NOTTOBIE, that is the question. The answer is on page 7

READ/WRITE 16
A little electronic mail.
THE REAL COMPONENTS 18
John Linsley Hood conducts a guided tour of certain oneway paths.

NOISE ABOUT NOISE.23

Neil Munro has been listening carefully to his power supply.

PROJECTS

PRINTER BUFFER

33Ever wanted to disguise your creaky old printer as an ultra-high speed model? This project may not fool the world but it will certainly fool your computer.

NOISE GATE. 38
An open and shut case for better stage performance.

SECOND PROCESSOR FOR THE

 ELECTRON43John Wike concludes his description of this useful add-on and includes a full software listing.
UNIVERSAL EPROM
PROGRAMMER MKII. 48
Mike Bedford continues his description with a discussion of the software requirements.

ETCETERA

REVIEWS 57
We try out the Microprofessor MPF$1 / 88$ and some versatile multimeters.

OPEN CHANNEL. 59 Keith Brindley wonders whether satellite television is really necessary.

TRAINS OF THOUGHT

60
Track down your trains.

SCRATCH PAD
Flea Byte gets under the surface of a few more news stories.

We regret that, once again, we have been unable to find room for the promised EPROM emulator article. We will do our best to make good the omission next month

INFORMATION

WATFORD ELECTRONICS MAIL ORDER，CALLERS WELCOME
Tel．Watford（0923） $37774 / 40588$ Telex． 8956095

We stock mousande more enchume．It pays to visit us
Neareat Underground／BR Stotion：Wattord Migh Streel

 16p． 470 20p．680 34p． 1000 27p． 150031 p． 2200 26p： 4700 72p TAG－END CAPACITORS：64V： 2200 120p；3300 145p； 4700 245p； $50 \mathrm{~V}: 2200$ 95p；3300 155p；40V： 4700 160p；25v： $220070 \mathrm{p} ; 3300$ 85p； 4000.4700 75p； 10.000 250p；15．000 270p；18V： 22.000200 p.

polyester capacitors：Mial Lead Typo 400V： $1 \mathrm{nF}, 1 \mathrm{n} 5,2 \mathrm{n} 2,3 \mathrm{n} 3,4 \mathrm{n} 7,6 \mathrm{n} 11 \mathrm{p} ; 10 \mathrm{n}, 15 \mathrm{n}, 18 \mathrm{n}, 22 \mathrm{n} 12 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n}$ ． $68 \mathrm{n} 16 \mathrm{p} ; 150 \mathrm{n} 20 \mathrm{p} ; 220 \mathrm{n} 30 \mathrm{p} ; 330 \mathrm{n} 42$ ； $470 \mathrm{n} 32 \mathrm{p} ; 680 \mathrm{n} 4 \mathrm{uF} 8 \mathrm{D}_{\mathrm{p} ;} 2 \mathrm{u} 282 \mathrm{p}$ ． 1000V： 1 nF 17p；10nF 30p； $15 \mathrm{n} 40 \mathrm{p} ; 22 \mathrm{n} 38 \mathrm{p} ; 33 \mathrm{n} 42 \mathrm{p} ; 47 \mathrm{n}$ ． $100 \mathrm{n} \mathrm{42p}$.		
POLYESTER RAOIAL LEAO CAPACITORS：25OV $10 \mathrm{n}, 15 \mathrm{n}, 22 \mathrm{n}, 27 \mathrm{n} 6 \mathrm{p} ; 33 \mathrm{n}, 47 \mathrm{n} .68 \mathrm{n}, 100 \mathrm{n} 8 \mathrm{p} ; 150 \mathrm{n} .220 \mathrm{n}$ 10p；330n，470n 15p；680n 10p； 1 u5 40 p； 2 u 248 p ．	FEEDTHROUGH Capacitors 10000F／450V	10

POLYSTYRENE CAPACITORS： 100户F 10 1nF 8p： 1.5 nF 1012 nF 10 p ．	
SILVER MICA（Values in P （f）	
$2,33,47,68,82,10,12,15,18 \text {. }$ $22.27 \quad 33 \quad 39,47 \quad 50,56,68,75,82$	
85．100．120，150 180pF 15p each	
200．220．250．270，300．330．360，	
390，470，800，800， 820	210 esch
100，1200，1800， 2200	30 pesch
3300，4700pF	80p

MINIATURE TRIMMERS Capacitort	
2.6 DF	2.10 DF
22 pi	2.250 F

2．6DF ${ }^{2 \cdot 10 \mathrm{DFF}} 22 \mathrm{p}, 10-88 \mathrm{pF} 36 \mathrm{D}$.

RESIS 0.25 W

\qquad

dIODES

 SIEMENS pCoRANGE
$2 \mathrm{n} 2=$

$\begin{array}{ll}33 n 39 n 47 n & 8 p \\ 39 n & 56 n \\ 82 n & 120 \\ 800 n & 11 p\end{array}$100 V
100 n
150 O

$$
\begin{aligned}
& 28 \text { Met } \\
& 10 \mathrm{Meta} \\
& 100+\mathrm{pr} \\
& \text { mixed }
\end{aligned}
$$

$\stackrel{\text { Re }}{\text { REC }}$

界畄荡8客台888
\qquad2N3820
2N382／3

2N3666| | 60 | 2 |
| :--- | :--- | :--- |
| 60 | 2 | |
| 00 | 2 | |2 SC 2335200

$2 \mathrm{SC2547} 40$
2
$2 \mathrm{~N} 38603 / 4$
$2 \mathrm{~N} 3905 / 6$
\qquad
\qquad

$39 / 4030$
$1 / 79$
$30 / 81$
15
105

\qquad
$\begin{array}{r}220 \\ 4 \\ \hline \\ \hline\end{array}$A119
AA129
AAY
BAO
話俻
VARICAPS
84102
88105 B
88106

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

DIGEST

TOBIE Award

for EfP Co-ordinator

Tony Wilson, co-ordinator of the group Electronics for Peace, has won the 1985 TOBIE award for Electronics Personality of the Year.

Tony, who was interviewed in the April issue of ETI, was presented with the award at the All Electronics Week Ball held at the Grosvenor House Hotel in Park Lane. The presentation was made by Mick McClean, editor of Electronics Times.

There were three nominations for the award, one of seven
given annually for Technology Or Business Innovation in Electronics. The othernominees were Sir Kenneth Corfield, chairman of STC and Tony Jannece and Alan Mansfield, directors of a small electronics company. The votes were placed by the readers of Electronics Times.

Of the other TOBIEs, the application award went to Louis Woolfson of Pathway Communications for his Braillewriter, a portable terminal which is unique in being able to produce hard

U2 Can Save On Batteries

Biles Engineering are distributing a miniature, high efficiency, 1.5 V DC to 12 V DC converter with a maximum output current of 50 mA . It is designed for
use where $9-12 \mathrm{~V}$ rails must be derived from a single 1.5 V cell, and the manufacturers claim that it can offer a considerable saving in battery costs since 1.5 V cells are almost invariably cheaper
than higher voltage batteries of similar watt/hour capacities.

The Verkon V12 is a variabledrive switch-mode step-up converter which is encapsulatec in epoxy resin and sealed in a seamless steel case. A high degree of screening results and the device is also rugged enough to be used in portable equipment where shocks and vibrations can be expected. No heatsinking is required and it can be directly mounted on a PCB or chassis mounted using a 30 mm capacitor clip.

In use it must be connected to a capacitor of 470 uF minimum mounted as close to the pins as possible, and a decoupling capacitor on the input may be required depending on the distance from the cell to the pins. The V12 can withstand a momentary short circuit but should be protected against long term shor: circuits. A fuse of 100 mA or less is recommended between the output capacitor and the load.

The V12 could be used to supply equipment directly at 12 V from a 1.5 V cell or the output voltage dropped through a regulator to the more commonly used 9 V . In this case, the supply to the equipment would probably be more stable than if it were taken directly from a 9V battery. In either case, the use of a V12 and a 1.5 V ' D^{\prime} cell should work out cheaper than using 9 V ' batteries.

The manufacturers point out that an alkaline ' D ' cell costs only about half as much as the alkaline PP3 but has three times the watt/ hour capacity. Given the V12's 80\% conversion efficiency, even with a 25\% voltage drop in a regulator the life of the ' D ' cell will still be around twice that of a PP3, with consequent savings in cost.

The V12 costs $£ 5.25$ including VAT plus $£ 0.45$ post and packing. It is available from J. Biles Engineering, 120 Castle Lane, Solihull, WestMidlands B92 8RN, tel 05432-22382.

Epson Introduces New Printers

E pson have launched the first

 two models in a range of inkjet printers which, they claim, offer the speed of dot matrix machines and quality comparable with that of daisy wheels but without the noisiness of either.They say they have avoided the problems usually associated with ink-jet printers by using a specially formulated ink, a cap which automatically seals the printing head when the machine is not in use, and an instant head cleaning system available at the touch of a button.

The SQ-2000 is at the top of
the range and offers 105 CPS in letter-quality mode and 176 CPS in draft mode. The head uses 24 nozzles and a wide range of typefaces are included. Further typefaces and a range of slot-in interface boards can be added.

The HS-80 is a brief-case sized A4 printer which has a nine nozzle head and offers 160 CPS (not including line throws). It should be available in the Autumn.

Epson (UK) Ltd, Dorland House, 338 High Road, Wembley, MiddlesexHA9 6UH, tel01 - 9028892.

RECHARGEABLE BATTERIES NOT LINE DATA BASE
Dry Fit Maintenance FREE by Sonnenschein.
A300 0719131512 V 3 AH Same as RS 591.770 NEW A 1300 0719131
E 13.95 A300 071912026.0 .61 .8 AH same as RS 591 . 382 EX EOUIP E4.99 Minlature PCB mound 3.6 v 10
Mah as RS $591-477$ NEW E1.00 SAFT VR2C $1.2 v$ Mah as RS $591-477$ NEW $£ 1.00$ SAFT VR2C $1.2 v$ "C"
slze NICADS in 18 cell ex equipment Dack Good condition

DISTEL©

THE ORIGINAL FREE OF CHARGE dial UD
1000 's of stock tems and one off bargains. $01-6791888$

MAINS FILTERS

EX-STOCK INTEGRATED CIRCUITS

2732 ex equip £3.25. 27128-250 $6116-200 £ 4.50 .8116 .250 £ 3.95$

 8264LP-150 £22.00. $4164 \cdot 200$ £3.50, 4884-150 £4.00 68AO9 £8.00, B8B09 £10.00, 6BBO9E E14.50 O8085AH-2 £1 2.00, D8086 £20.00, $280 A$ E2. Anderson Jacobson AJB10 VIDEO DISPLAY TERMMAZ
manufacture the AJ510 Professional VDU rerminal has too many eatures to include in space avallable - just a few are readable $15^{\prime \prime}$ no control, very creen 24 lines non glare green screen, 24 lines by 80 characters, ASCll character set with low case and graphlcs, standard RS232 Interface, Cursor addressing, numeric key pad etc. Supplied in good ESTE second hand condition with full manua

COOLT RAB Exin almoat sitent unning and guaranteed 10.000 MUFFIN-CEMTAUR comple wete. Ian supplied tested EXEQUIPMENT $240 \vee$ at E6.25 or 110 v t $£ 4.95$ or BRAND NEW 240 it 10.50 . 1000 's of other tans Ex Stock at 10.50 .1000 's of other fans Ex Stock Call tor Details Post \& Packing on all lans
 BUDGET GAIAE VIDEO MONITORS EOUPMEMENT video monitors dery competiflon" All are for 240 v working with standard composite video input. Unils are pre lested and sel for up to 80 col use on 88 m micro. Even where MINOR screen burn MAY inaffected. 1000's SOLD TO DATE 12 KGM $320-321$, high bandwidth inpul will display up to 132 columns $\times 25$ lines Housed in altracilve filly enclused brushed allov case B/W only $£ 32.95$ 24 KGM large screen black 8 white monitor fully enclosed in light alloy case Neal sctiog

DATA MODEMS

Join the communications revolution with
Our super range of OATA MOOEMS wilh prices and types to suit all applications and budgels"
Mosi modems are EX BRITISH TELECOM and are made to the highies! RS232 Intertaces are standard to all our modems, so will connect 10 ANY
with an RS232 serial intertace.
DATEL 2B see SPECIAL OFFER centre of
Mis ad
Standard CCITT iones CAlephone base
Tested with data OwlyEes.00 + Pe ERSO. Mor
OU US as subscriber end poud. CRESTEL
MICRONET O TELECOM GOLD Tested Mata. EJO.95 + PP E6. 50. MODEM 20
TRANSDATA 307 A 300 baud acoustic
coupler. Brand new with RS232 intertace
ONLY £49.95
OACOM DSL2 23 Multi Standard Modem.
switchable CCIIT Or USA BELL 103 slandard

$1200-1200$ hall duplex Auto answer via MODEM or CPU CALL

\qquad
\qquad C800. OUR PHICE EIBS.OO.
DATEL 4800. RACAL MPS4800 high s E 1145.00 GARR E10.00

A Major company's over production problems, and a special BULK PURCHASE enable TWO outstanding offers. COLOUR MONITOR SPECLALS 'SYSTEM ALPHA' 14 " Multi Input Monitor.
 Made in the UK by the famous REDIFFUSION Co. for their own professiona computer system this monitor has all the features to suit your immediate and future allow direct connection to most makes of micro computers and VCR's. An internal speaker and audio amplifier may be connected to your system's VCR's. An interna a VCR machine, giving superior colour and sound quality. Many other features inciude PIL tube, Matching BBC case colour. Major controls on front panel Separate Contrast and Brightness - even in RGB mode, Two types of audio input, Separate Colour and audio controls for Composite Video input BNC pur composite input, 15 way 'D' plug for RGB input, modular construction BNC plug to

This must be ONE OF THE YEAR'S BEST BUYSI!
Supplied BRAND NEW and BOXED, complete with DATA and 90 day guarantee DECCA RGB 80-100 Monitor.
 Little or hardly used manufacturer's surplus enables us to ofter this special
converted DECCA RGB Colour Video $T V$ Monitor at a super low price of only £99.00, a price for a colour monitor as yet unheard ofl! Our own interface, satety modification and special $16^{\prime \prime}$ high definition PIL tube, combine with the tried and tested DECCA $80 / 100$ series chassis to glve 80 column definition and picture quality found only on monitors costing 3 TIMES OUR PRICE. In fact WE GUARANTEE you will be delighted with this product the quality for the price has to be seen to be believed. Supplied complete and ready to plug directo to a BBC MICRO computer or any other system with a TTL RGB Output Other features include sinternal audio amp and speaker, Modular construction, auto degaussing $34 \mathrm{H} \times 24 \mathrm{D}$, 90 day guarantee. Supplied in EXCELLENT condition ONLY c 99 ob + Carr. Also avallable UN-MODIFIED but complete with MOD DATA. Only $£ 75.00$. Carriage and insurance on monitors $£ 10.00$

SPECIAL 300 BAUD MODEM OFFER

NEW or little used $2 B$ data modems allows US to make the FINAL REDUCTION and for YOU to join the exciting worid of data
communications at an UNHEARD OF PRICE OF ONLY £29.95. Made to the highest POST OFFICE APPROVED spec at a cost of hundreds of pounds each, the $2 B$ has all the standard requirements for data base, business or hobby communications. All this and more

$$
\begin{aligned}
& \text { - } 300 \text { baud full duplex } \\
& \text { - Full remote control } \\
& \text { - Supplied with full data } \\
& \text { - mow one } \\
& \rightarrow \text { NOW ONLY } \\
& \text { - CALL. ANSWER and AUTO modes } \\
& \text { - Built in test switching } \\
& \text { - } 240 \mathrm{v} \text { Mains overation } \\
& \begin{array}{l}
\text { year fuil guarantee } \\
\text { ust } 2 \text { wires to comms. line }
\end{array}
\end{aligned}
$$

save

$E 250$

SUPER PRINTER SCOOP BRAND MEW CENTRONICS 739-2

HUNDREDS OF PRINTERS

EX STOCK FROM £49.00. Call Sales Office for Details.
1 only large CALCOMP 1036 AO 3 pen drum plotter and offline 915 magtape controller. Good working order

DEC CORNER

PDP 1140 System comprising of CPU
$124 K$ memory + MMU 16 line RS 232 Interface. RP02 40 MB hard disk drive rack system. VT52 VDU etc. etc. Tesled
and running
E 3750 BA11-MB 3.5" Box, PSU. LTC
DH11-AD 16 x RS232 DMA
interface OLV11-J $4 \times$ EIA intertace
DLVII-E Serlal. Modem suppo DLVII-E Serlal. Modem suppo
DUP11 Sych. Serial data DUP11 Sych. Serial data
DO200 Dilog-multi RK
DZ11.B B line RS232 mux board E E $\mathbf{E S 5 . 0 0}$ KDF11.B M8189 PDP $1123+\quad \varepsilon 1100.00$ LA36 Decwriter Ela or 20 ma loop $£ 270.00$ MAX34-AL LA34 iractor leed $\quad \mathbf{M 5} .00$ MS11-JP Unibus 32 kb Ram $\mathbf{M S} 11-\mathrm{LB}$ Unibus 128 kb Ram $\mathbf{~} 850.00$ MS11-LB Unibus 128 kb Ram $\quad \mathrm{E450.00}$
MS11-LD Unibus 256 kb Ram
MS50.0 MS11-LD Unibus 256 kb Ram 256 kb POP1 $1 / 05 \mathrm{CDU}$. Ram, i/O, et RT 11 ver. 38 documentatio RKO5-J 2.5 Mb disk drives KL8 JA PDP 8 async i/o
MIBE POP 8 Bootstrap option
[499.00 \&459.00 $\& 450.00$
$\varepsilon 1850.00$ $£ 70.00$ $£ 70.00$
$£ 650.00$
$\varepsilon 175.00$ $ع 175.00$
$\quad 875.00$ VT 50 VDU and Keyboard $£ 175.00$
8250.00

1000's of EX STOCK spares for DEC
PDP8, PDP8 , POP1 1 systems \&
Computer equipment and spares wanted
Or PROMPT CASH PAYMENT

LI寝L
 ELETRTATIS

NEWS:NEWS:NEWS:NEWS:NEWS:NEWS:NEWS

Texas instruments have published two new semiconductor brochures, one dealing with linear and interface circuits and the other with industry standard line circuits. The first brochure covers the complete spectrum of TI analogue and interface circuits and includes an alpha-numeric listing and equivalents table, while the second describes international standards such as RS232, RS423, IEE488, etc. The brochures are available on request from Texas Instruments Ltd, Manton Lane, Bedford MK 41 7PA, tel 0234-63211.

- Carston Electronics are offering the DEC Rainbow and several other personal computers at a greatly reduced price for a limited period. The Rainbow costs $£ 1350$ for the 64 K version or $£ 1750$ for the 128 K version, the Decmate 2 costs $£ 2350$ and the Professional 350 costs $£ 3200$, all exclusive of VAT. Carston Electronics Ltd, 99 Waldgrave Road, Teddington, Middlesex TW11 8LL, tel 01 9434477.
- The Amateur Computing Club have sent us a copy of the latest issue of their journal, ACCumulator. It contains articles on the C language and robotics amongst others and those interested in joining and receiving ACCumulator should contact Andy Leeder, Church Farm, Stratton St. Micheal, Norwich.

Rural Radio Payphone

Plessey Radio System has developed a stand alone, rural payphone system which could put the Third World on the telephone. The roadside telephone needs no conventional wires for communications because it is powered by solar or combined solar and wind energy and uses radio to link up with the exchange.

Solar or wind power, or a combination of both, charge an inbuilt battery system which in turn powers the radio and payphone. The payphone, which is of the type extensively used by British Telecom in the UK, is equipped with ringing facilities, tariff signalling and a liquid crystal readout of coin values. It is housed in a vandal proof case.

In operation, speech is carried through an integral transmitter to the nearest exchange or junction to gain access to the country's trunk network, enabling the caller to have full national or international telephone facilities. The payphone is also able to act as a direct local link, on a point to point basis, so that remote villages can communicate with each other. The radio is available on 450 MHz and 1.5 GHz .

The payphone is able to recognise 24 different currencies

and an inbuilt cash management system reports when the coin box is 75 per cent full. For simple installation a metal plate at the foot of the payphone pole is dropped into a concrete base.

An adaption of the payphone configuration has already been
installed in Turkey where a completely mobile post office with full service facilities is bringing a new communications technology to villages and seaside resorts. Early discussions are now taking place with a South American country.

Well Protected DMM

Harris Electronics are marketing the TMK VF9 multimeter, a pocket-sized, push-button digitalmultimeterwith a 3 /2 digit LCD display. It has a basic DC accuracy of 0.5%, automatic over-range and low battery indication and the manufacturers claim that it has been designed throughout with safety in mind.

The VF9 will measure up to 100 V DC and 750V AC with a minimum resolution of 1 mV . The four resistance ranges cover 1 R to 20M and the DC current ranges allow measure ments from 1uA to 2A. A 2 amp fuse forms part of the overioad protection system and all inputs are fully protected on all ranges, including resistance.
The LCD display has $y^{\prime \prime}$ " high digits and includes polarity indication. The low battery warning appears when about 10\% of the battery life remains, and Harris claim that a life of about 2000 hours can be expected with alkaline cells. The input jack

sockets and the test leads comply with UL 1244 and VDE 0411 safety requirements.

The VF9 measures $130^{\circ} \times 75 \times$ 28 mm and weighs 195 g . It is guaranteed for twelve months and costs $£ 34.95$ plus VAT complete with battery, manual and test leads. Harris Electronics (London), 138 Grays inn Road, London WC1X 8AX, tel 01-837 7937.

Active Loudspeaker Stands

Taking a novel approach to the problem of getting more bass from small loudspeakers, Asscom have come up with a hollowstand which couples to a 'speaker to increase its effective volume. The stands come in kit form and are designed for the Wharidale Diamond, but the manufacturers say they can easily be adapted to suit other small loudspeakers.

The stands are made of wood and incorporate a tapered column which is tuned to boost low frequencies. The loudspeaker attaches to the front of the stand and acoustic coupling is achieved by means of a hole in the front face of the stand and the hole in the back of the loudspeaker which normally carries the connector panel. In the case of the Wharfdale Diamond, this hole is about $3^{\prime \prime}$ in diameter. Once the panel has been removed, the loudspeaker can be screwed to
the stand using the connector plate fixing positions and the wiring extended to a new connector plate position on the back of the stand.

Asscom claim that the active stands extend the response of the Diamonds downwards by about 30 Hz and do so without affecting the upper base and midrange. They say that the efrect is to add weight to the sound without introducing any of the artificial boominess often associated with cheap loudspeakers which attempt to imitate an extended bass response by emphasising the upper bass region.

The kits include p:e-cut panels, battens, screws, pins, wadding, damping, woodgrain-effect vinyl covering material, etc. Asscom will consider producing a readybuilt version if the demand warrants it. The kit costs $£ 29.95$ per pair plus $£ 4.95$ post and packing, and an instruction manual containing the plans and details of some other modifications is available for $£ 4.95$.

Asscom, Unit 3, Mossedge Industrial Estate, Linwood, Renfrewshire PA3 3HR, tel 0505-35974.

Containerised TV Station

|ncomtel have developed a powerful television transmitter station which is totally self sufficient within multiple 20' long steel containers and can begin broadcasting within days of arriving on site, anywhere from a remote jungle clearing to an isolated desert range.

Incomtel claim that this is the fastest way to introduce a TV service to a region, and the savings for the customerwill be in time and money since no permanent buildings will be needed and relocation is fast and simple. Other customers, with established TV networks, have also shown interest in a containerised station to back their permanent installation, ensuring broadcasting continuity around the clock in the event of an emergency or breakdown. The only civil engineering works required are mast foundations and concrete bases for the main containers and the diesel generating set.

In this first station three of the containers have been designed to accommodate two 10 kW Band III TV transmitters, together with two high voltage power transformers, two programme input racks and test equipment. The UHF link receiver rack, notch diplexer,
aural and visual dummy loads with changeover switches together with the pressurisation system for the antenna coaxial cable and UHF waveguide are all installed within the three container 'heart' of complex.

Each of the steel fully insulated ribbed ISO containers are air conditioned and special precautions have been taken to inhibit the ingress of fine dust and sand. A specially designed sun roof canopy will protect the entire complex in countries with extreme temperature conditions and each station will be totally independant with its own water, power and fuel supplies.

A custom-designed Rolls Royce 125 kW generating set complete with bulk fuel tank fits into a single container which has been sound-proofed to a high standard. Also provided within the complex are reception, staff accommodation and recreation areas, office and stores. To complete the pakage there is a 150 metre mast fitted with a 12 panel double dipole Band III directional antenna system and a 13 CHz parabolic link antenna.

Incomtel Ltd, 225 Goldhawk Road, London W12 8S8, tel 01 : 7435511.

RS232C Optical Fibre Link

Belling Lee Intec have introduced a full duplex optical fibre transceiver which plugs directly into the standard ' \mathbf{D} ' type connector used for RS232Cinterfaces. They claim that it allows highperformance transmission of data over an extenced distance withoua the need for data cables.
The $\mathbf{L 2 8 4 0}$ can be used with fibre optic cables of 100 microns and upwards and is fitted with 9 mm SMA-style fibre optic connectors. Data rates from DC to 64k baud can be accommodated
and a special feature is the ability to be configured internally as either a data terminal equipment (DTE) or data communications equipment (DCE). The supply voltage is 9 V connected via a miniature jack plug from an external mains adaptor.

A data sheet describing the $L 2840$ is available from the manufacturers, Belling Lee Intec Ltd, 540 Great Cambridge Road Enfield, Middlesex EN1 3QW, tel 01-3670080.

- We have received a lot of requests for cut-price backnumbers following our offer in these pages last month. We have sold out of many of the issues listed but still have copies of November 1982, January 1983, May 1983 and December 1983 going for $50 p$ each. If you want a copy of any of these issues, just send us a cheque or postal order for the appropriate amount and, to save us time, enclose your name and address on a gummed label or at least on a piece of plain paper which we can paste down.

Soldering Iron Thermometer

Designed for use in applications where soldering iron tip temperature must be precisely controlled, West Sussex Instruments have introduced a digital electronic thermometer which will provide readings of tip temperature in seconds.

The WSI 500 has an integral sensor mounted on the front panel and will measure temperatures from $-50^{\circ} \mathrm{C}$ to $+500^{\circ} \mathrm{C}$. It has a resolution of $1^{\circ} \mathrm{C}$ and an accuracy of $0.5 \% \pm 1$ digit plus the
deviation of the thermocouple. The liquid crystal display has 12.5 mm high digits and the meter will operate for approximately 1000 hours from a PP3 alkaline battery.

In operation, the soldering iron is simply pressed against the sensor and a reading is obtained within seconds. An area of sponge surrounds the sensor so that the bit can easily be cleaned.

The WSI 500 costs $£ 39.50$ plus carriage and VAT and is available from West Sussex Instruments Ltd, 12A Coronation Buildings, Brougham Road, Worthing, West Sussex BN11 2NW, tel 0903 212303.

Serpent SCARA assembly robot
On show at
Training \& Development NEC 9- fith July

AND To be featured as a constructional project in Practical Electronics September issue.

BRITAINS FOREMOST QUALITY COMPONENT SUPPLIERS

Events Diary

Unix Training Course - June 11-12th
Plessey Microsystems Training Centre, Towcester. Training in Unix system 111 or V, including hands-on experience using a Plessey System 68. Aimed at data managers and software staff interested in multi-usercomputertechniques. Contact Plessey Microsystems, Sales Office, Water Lane, Towcester, Northamptonshire NN12 7JN, tel 0327-50312.

Computer Graphics Course - June 11-14th

Cafe Royal, Regent Street, London. A comprehensive overview which moves from fundamental concepts to the selection and effective use of top-flight workstations and software. The cost is $£ 585.00$ plus VAT and details are available from ICS at the address below.
European Unix User Show - June 12-14th
Olympia 2, London. For details see June issue or 'phone 01-837 3699.

Computers In Manufacturing Show - June 24-27th

Olympia 2, London. For details see June issue or 'phone 01-891 3426.

Networks - June 25-27th
Wembley Conference Centre, Wembley, Middlesex Exhibition and conference covering Local Area Networks, electronic mail and other data exchange networks. The full conference programme costs $£ 395.00$ + VAT, exhibition entrance costs $£ 5.00$ and the organisers expect about eighty exhibitors. Contact Online at the address below.

Condition Monitoring In Hostile Environments - June 26th

Regent Crest Hotel, London. For details see June issue or 'phone 0372-374151.
Living With Quality Demands B55750 - June 27th
PERA, Melton Mowbray. One day seminar organised by the Production Engineering Research Association and designed to help production and quality control staff understand and implement the requirements of BS5750. Cost is $£ 125$ + VAT with a discount for PERA members. PERA, Melton Mowbray, Leicestershire LE13 OPB, tel 0664-501329.

Personal Robotics Conference \& Exhibition - July 2-4th

West Centre Hotel, London. Sponsored by a number of bodies including the IEE, the event includes a conference attended by speakers from the USA and Europe, specialist workshops and the UK finals of the Micromouse competition. The cost is $£ 250.00$ + VAT which includes all refreshments, etc. Oyez Scientific \& Technical Services Ltd, Third Floor, Bath House, 56 Holborn Viaduct, London EC1A 2EX, tel 01. 2364080.

Programming In C: A Hands-On Workshop - July 2-5th
Cafe Royal, Regent Street, London. Each participant is given access to a Unix system with a C compiler and instructed in the writing and execution of C programmes. The cost is $£ 635.00+$ VAT and details are available from ICS at the address below.
Leeds Electronics Show - July 3-5th
University of Leeds. See June issue for details or'phone 0799-26699.
Cable - July 9-11th
Metropole Hotel, Brighton. Conference and exhibition expected to attract $60-70$ exhibitors. Conference topics include technology now and in the future, teleshopping and other interactive services and the question of subsidy versus investment. Exhibition entrance costs $£ 10.00$, full conference programme costs $£ 330.00+$ VAT and details are available from Online at the address below.

Personal Computer World Show - September 4-8th

Olympia, London. The main exhibition covers home and educational computing while a separate exhibition in Olympia 2 caters for business and professional users. For details contact Montbuild Ltd, 11 Manchester Square, London W1M 5AB, tel 01-486 1951.

Addresses:

ICS Publishing Company (UK) Ltd, 3 Swan Court, Leatherhead, Surrey KT22 BAD, tel 0372379211.
Online International Ltd, Pinner Green House, Ash Hill Drive, Pinner, Middlesex HA5 2AE, tel 01-868 4466.

Fresh Orange

Castle Associates have introduced the latest version of their 'Electronic Orange', a noise monitoring system intended for use in places of entertainment. The new mocel has been designed specifically for use in dicotheques and removes the mains supply to the sound console if the noise level exceeds the threshold and the DJ ignores warnings to reduce the volume.

The Mk1V Electronic Orange consists of a microphone, a control unit and the distinctive orange warning lamp. The microphone should be mounted in the main dance area and its output is fed to the control unit. A sound level circuit built to the requirements of BS 5969 Type 2 compares the incoming signal with a preset level and illuminates the warning lamp if it is excessively high. If the DJ does not respond to the warring by reduc-
ing the sound level, the unit will allow a short delay and then briefly interrupt the supply to the disco console. This short period of silence provides an effective deterent and ensures that the volume is generally maintained at a reasonable level.

Castle Associates point out that complaints about high noise levels from places of entertainment feature regularly in the Environmental Officer's league table of complaints and that the recent Local Government (Miscellaneous Provisions) Act 1982 gives Local Authorities the power to prescribe conditions and restrictions before licensing a place of entertainment. The complete Electronic Orange system costs £350.00 plus VAT and comes with comprehensive installation instructions.

Castle Associates Lid, Slater Road, Cayton Low Road Industrial Estate, Scarborough, North Yorkshire YO11 3UZ, tel 0723 584250.

BBC Headphone Protector

The BBC's Engineering Designs Department has developed a compact limiter which protects headphone listeners against excessively high sound levels. The device introduces no distortion until the limiting level is reached, draws its power from the signal so that no other power source is required, and the design is now available to UK firms fo manufacture under licence.

The protector is smaller than a matchbox and is wired into the lead between the amplifier and the headphones. The limiting level is set during assembly to a value in the range 95 to 110 dBA and an averaging network prevents the limiter operating on short duration peaks. To allow for the dynamic range of the signal.
the operation of the averaging circuit is such that the mean programme level must be about 5 to $8 d B$ below the limiting level if it is not to be clipped. A weighting network is included to prevent the limiter acting on the less harmful low frequencies.

The BBC say that some form of protection is essential where headphones could inadvertently be connected to the loudspeaker output of an amplifier. and that there is also a need because listeners often use headphones at high volume levels, especially where there is ambient noise.

The Engineering Information Department, BBC, Broadcasting House, London W1A1AA, tel 01 . 9275432.

01-208 1177 Technomatic Lid 01-208 1177

BBC Micro Computer System

acorn Computer systems	BBC FIRMWARE
BBC Model B Special offer.........-... 5300 (a)	
BBC Model B +Econer 5335 (a)	Basic 11 ROM .-.
BBC Model B+DFS..................E346 (a)	View Word Processor ROMes48.00 (c)
B8C Model S+DFS +Econet 5399 (a)	Wordwise
UPGRADE KITS	BCPL ROM/Disc15200 (b)
A 10 B Upgrade Kn.................. 885 (d)	Disc Doctor/Gremin Debug ROM Eze (d)
DFS KH.	EXMON/TOOL KIT ROM............E28 ©is (d)
	Printmaster (FX80)/Graphics ROM
Speech Kit....-.........................EA7 (d)	c2e on (d)
ACORN ADO-ON PRODUCTS	ULTRACALC Spreadsheot ROM
280 2nd Processor-..........e348 (a)	
6502 2nd Processor	
Tenext Adaptor ...) - - - -	COMmunication rom
IEEE Intartace	Termi Emulatorc28 (d)
Prestel Adaptor............................c.c9 (b)	Communicator 559 (d)
RH Light pen 539.50 (c)	Commstar................................529 (d)
TORCH UNICON products including the IBM Computible GRADUATE in stock For detailed specification on any of the BBC Firmware/Peripherals listed here or information on our complete range please write to us.	
PRINTERS	
EPSON	
RX80FT E225(a) RX80TE215(a)	$\text { FX80£315(a) FX } 100 £ 435(a)$ AXAN
$\begin{aligned} & \text { KP } 810 \text { (80col) £225 (a) } \\ & \text { JUKI } 6100 \text { £325 (a) } \end{aligned}$	KP910 (156col) £349 (a) BROTHER HR15 £325 (a)
ACCES	ORIES
32K Internal Buft	Parallel c 99 (b)
Serial Interface: 8143 £2	(c); 8148 with $2 \mathrm{~K} \mathrm{E59}$ (c)
Paper Roll Holder £17 (d); FX	0 Tractor Attachment £37 (c)
Ribbons: FX/RX/MX80 £5	(d) FX/RX/MX100 \&10 (d)
RX/FX80 Dust	Cover 84.50 (d)
KAGA	AXAN
RS232 with 2K Buffer £85 (c) KP810/910 Rlbbon £6.00 (d)	
JUKI 6100	
BBC Parallel Lead $£ 7$ (d) Serial Lead $\mathbf{8 7}$ (d)	
2000 Sheets Fanfold Paper with extra fine perforation	
9.5 " $\times 11^{\prime \prime} \mathrm{\Sigma 13}$ (b) 14.5 " $\times 11^{\prime \prime} \mathrm{£17.50}$ (b)	
Labels per 1000's; single row $31 / 2^{\prime \prime} \times 17 / 16^{\prime \prime} \mathrm{E5.25}(\mathrm{~d})$	
Triple Row $27 / 18^{\prime \prime} \times 17 / 16^{\prime \prime} \mathrm{\Sigma 5}(\mathrm{~d})$	

MODEMS

- All modems listed below are BT approved

MIRACLE W 32000 :
The ultimate world standard modem coveral all common BELL and CCITT standards up to 1200 Baud. Allows communication with wiroptional AUTO DIAL and AUTO ANSWER ooards enhance the considerable faciaithies already provided on the modem. Mains powered f129(b). Auto Dial Board/Auto Answer Board $£ 30(\mathrm{c}$) each. (awalting BT approval) Sotware lead £4.50.
TECHNOLINE VIEWDATA SYSTEM
Using "Prestel' type protocols for information and orders phone 01-450 9764, 24 hour service 7 davs a weak

BUZZ BOX:

This pocket sized modem complies with V21 $300 / 300$ Baud and provides an ldeal solution for communications between users, with main trame computers and bulietin boards at a ver £62(c). Mains adaptor $£ 8(d)$.

BBC to Modem data lead $£ 7$.

GANG OF EIGHT INTELLIGENT FAST
 EPROM COPIER

Copies up to eight eproms at a time and accepts all single rall eproms up to 27256 . Can reduce programming time by 80% by using manufacture's suggested algorithms Fixed Vpp of 21825 volts and vartable vpp factory set at 12.5 volts LCD

SOFTY II

This low cosi intelligent eprom programmer can program 2716,2516,2532,2732, and with an adaptor, 2564 and 2764. Displays 512 byte page on TV - has a serial and parallel VO routines. Can be used as an emulator, cassette interface Softy II.
Adaptor for $2764 / 2564$. E25.00(c)

UV ERASERS

All erasers with built in safety switch and mains indicator,
UV1 B erases up to 6 eproms at a time. ... $\varepsilon 47$ (c) UV1 T as above but with a timer UV141 as abes up to 14 eproms at a time. $\mathrm{C88}$ (b) V141 as above but with a timer.......... $\mathbf{C 7} 1$ (b)

DISC DRIVES

These are fulty cases and wired drives with slim IIne mechanisms of high quality, Shuggart A400 standard interiace. Drives supplied with cables manuais and formatting disc suitable for the BBC computer. All 80 track drives are supplied with $40 / 80$ track switching as standard. All drives can operate in single or dual density format.

$1 \times .100 \mathrm{~K} 40 \mathrm{~T}$ SS:TS55A	c85(b)	PD200 with	c200 (a)
PS100 with psu	. 123 (b)	$2 \times 400 \mathrm{~K} 80 / 40 \mathrm{~T}$ DS: TD800	c275 (a)
$\times 400 \mathrm{~K} 40 / 80 \mathrm{TDS}$:TS55F	- 125 (a)	PD800 with Ps 4	¢300 (a)
PS400 with psu ilo....	f149 (b)	Plinth Version:	
		$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS TD200P PD200P with psu	£195 (a)
Stacked Version:		$2 \times 400 \mathrm{~K} 80 \mathrm{~T}$ DS TD800P	c295 (a)
$2 \times 100 \mathrm{~K} 40 \mathrm{~T}$ SS TD200	¢175 (a)	PD800P with psu	c315 (b)

3M 51/4" FLOPPY DISCS

High quallty discs that offer a reliable error free performance for life. Each disc is individually tested and guaranteed for life. Ten discs are supplied in a sturdy cardboard box
40T SS DD \&13 (c)
40 T DS DD \&18 (c)
80T SS DD £22 (c) 80T DS DD £24 (c)

DRIVE ACCESSORIES

FLOPPICLENE Disc Head Cleaning optimum performance of the drives	sable cleaning discs ensures continued . 14.50 (c)
Single Disc Cable ¢8 (d) 10 Disc Library	Dual Disc Cable $\mathbf{x 8 . 5 0}$ (d)
Case ...81.80(c)	30 Disc Case 88 (c)

MONITORS

MICROVITEC 14" RGB:

1431 Standard Resolution£165 (a)
1451 Medium Resolution ... $\mathbf{\Sigma 2 4 0}$ (a)
1441 Hi Resolution ... $£ 399$ (a)
1431 AP Std Res PAL/AUDIO................................ 210 (a)
1451 AP Med Res PAL/AUDIO $\mathbf{\Sigma 2 8 0}$ (a)
1451 DQ3 Med Res for QL£239 (a)
Above monitors are now available in plastic or metal cases, please specify your requirement.
KAGA Super Hi Res Vision III RGB£325 (a)
Hi Res Vision II...£225 (a)
MONOCHROME MONITORS 12":
Kaga Green KX1201 G Hi Res................................. 599 (a)
Kaga Amber KX1201 A Hi Res..............................£105 (a)
Sanyo Green DM8112CX Hi Res............................. $\mathbf{\Sigma 9 0}$ (a) Swivel Stand for Kaga Monochrome.......................£21 (c) All monitors are supplied with leads suitable for the BBC Computer. Spare leads available.

ATTENTION

$\begin{aligned} & 2764-25 . \\ & 27128-25 \end{aligned}$	

3.5

27128-25...........................87.0
6264LP-15 . 7.5

CONNECTOR SYSTEMS

READ/WRITE

Logical Captain

Dear Sir,
I thought technical people were logical thinkers - but I'm afraid the letter from Mr. Wakeham (ETI, May 1985) didn't appear too well hung together to me. Judging from the Editor's little piece, it would appear he thought it was a bit up in orbit too...

Of course, the usual paranoia about 'communism' was seen. Yet there are a large number of 'communist' philosophies Christian communism, Libertarian communism (I'm sympathetic to that), etc. I suspect Mr. Wakeham means the corrupt old business said to be based on a few things that a certain Karl Marx went on about. Then we read all about being phone-tapped - with bated breath! (By our democratic State! - Britain - land of the free shame on you Mr. Wakeham ...) Yet we read a 'curse on both your houses' - Communism and Capitalism.

I wonder if Mr. Wakeham realises that FREEDOM is the name of the Anarchist newspaper (started by a scientist, Peter Kroptkin, last century - and circulation said to be rising quite quickly at the moment)!?

Now we come to the 'objectives'. Well, yes, there has been talk about pressing a button to vote via the media, but someone has shown that it would be extremely easy for hackers of some genre or another to juggle the figures by underground input - to their heart's content. Next, Big Brother is watching you ... and 'the legislation is just and unambiguous', see, comrade no. 63 - or if you don't you it's Room 101 for you! (By the way, I'll control your mind - don't you argue with me - I'm a technician, and l've ceased to be meek!)

Now (to which we come at last) here's a thing. We must 'discover' those who are 'fit' and who can be 'trusted with power'. Who will do this programming? Why those who already have the power and those with a drive or a thirst for it! Mr. Wakeham's nearreligious faith in 'the technical fix' is touching, but hasn't he come
across the ease with which you can twist any of that knowledge to say nearly anything you like! (Alas, just look at some of the fiascos of technology in recent times...)
Yet this is not to say that technical projects etc. are not fascinating and action packed. But from the power point of view there is some nice work in existence showing a tendency for the growth of what might be called 'Techno-fascism'. There is no space to go into that here, but an eye should certainly be kept on it.

No, I'm afraid old Lord Acton was right when he said' Power corrupts, and Absolute Power corrupts absolutely.' Any technicians tempted to follow the absolutist path might like to try reading that excruciating book by Jacques Ellul called 'The
Technological Society', and also that by Dr. Alex Comfort called 'Power and Delinquency in the Modern State', which has a whole lot of medical argument to illustrate the peculiar state of mind of anyorie who is driven to seek political, or other, power over ... No mention is made in these analyses to the effect that a God-like absolute truth can be found in any computer, IT processor, TV set, or Technician for that matter ...

Yours sincerely,
Ken Smith
University of Kent
Canterbury.
I'm not sure I like that reference to my little piece, but it does strike me that the idea of technicians being qualified for power by virtue of their technical expertise is about as stupid as the idea that an actor might be fit to become President of the United States by virtue of his acting ability Ed.

Write/Read

Dear Sir,

I have recently started to read (and hopefully teach myself) about electronics. I have bought a number of the publications on the subject and find that yours is by far the best. However, I am having difficulties and I hope that
you may be able to help me.
My main interests are amplification and
microcomputers. I would therefore be grateful if you could recommend any worthwhile reading on these subjects. The libraries in my area do not have any appropriate books, and of the books on the market I am stuck for choice. A typical question that you have probably heard before is this: is it worthwhile my investing in an electronics course, either by correspondence or in my local 1 TeC ?

Yours,
J. Birch \cdot

St. Helens
Merseyside.
Advising on electronics books is difficult because I don't know what level you've reached or what your special needs are. I can only suggest you find a good college or university bookshop and browse, until you find the book or books that seems
readable and addresses itself to what you want to know. I can, of course, also recommend that you read our review pages which regularly feature new textbooks. This might give you some idea of what's available. In general, practical experience is probably vital in order to develop an understanding of electronics. We hope our projects may be of some use, but undertaking a course of some sort is undoubtedly a good idea. I would recommend a college or an ITeC (if it's a good one), if only because the on-the-spot assistance you would get is invaluable - Ed.

What A Bind!

Dear Sir,

CHEAT.

I refer to the cover photo of the March 1985 issue, pretty impressive circuit board for a home constructor, but unless I'm mistaken (which I'm not) the board shown is resting (in peace) gathering dust on the top of my wardrobe, bought for a few pounds from a surplus store as a video game.

The probability that this is a genuine mistake is 9245804:1 (this is also my phone number). Now that's improbable.

Seriously though, keep up the good 'work' and how about a reward for spotting the deliberate error or a bribe to keep quite.

Yours hopefully,
A. J. Moore,

Liverpool.
(PS: I believe you are looking for good homes for binders).

Dear A. J., you're not wrong. We were going to offer you the bribe, but we blew it.

Mixing with JLH

Dear Sir,

Reference JLH's mixer of June edition 1985. I take the point that ILH is not aiming at 'ultimate fi' but would like to point out that the Gramophone input circuit as published strays by almost 5 dBs in the upper bass region from the RIAA playback curve. This is easily remedied by changing the value of C34 from 49nF to 29.2nF (from $27 n F$ and $22 n F$ in parallel to $27 n F$ and 2 n 2 F in parallel), this, by chance, makes the values in the feedback very nearly those used by QUAD in the infamous '33'; can't be bad!

I would also like to recommend that an extra capacitor be added in parallel with the 'mixer pot' (RV12 as drawn), on the RIAA input stage. This will help the response at the higher frequencies where the attenuation of the series feedback arrangement tails off, the response will then be more like that of a 'shunt feedback' layout almost mentioned by /LH. In addition to the accuracy gained to the RIAA curve, this extra C helps particularly with scratches and other record noise. The value my ' $B B C$ ' and I recommend is $8 n 2 F$ and is not significantly affected in the audio band by the setting of RV12.

Yours faithfully,
J. R. Charlesworth

Pickering
N. Yorks.

Help-line

Dear Sir,

I feel'I must reply to the letter on page 15 of your May issue, from Mr. R. Leslie. Firstly, may I commend him on his action in taking his hobby further, but more importantly, I must warn him of the dangers of what he requests. In supplying equipment, a company should undertake to provide a
service, that is to say the use of shorter than 40 mm sliders provides no benefit, they are more difficult to adjust and more importantly if he has them made to order, then a customer with his machine may find that in a few years it is impossible to cobtain a replacement if, for example, Mr. Leslie's company has dropped that product. So, in conclusion, by all means use custom knobs, but please don't add to the confusion of special spares available only from the manufacturer (or not at all). In my own work I have often had to scrap customer's equipment due to lack of availability of special spares.

Yours sincerely,
David McIntyre
Kirkcaldy.
Please send letters of Help-line queries or contributions to Read/Write, ETI, ASP Ltd., 1 Golden Square, London W1 R 3AB. Any letter we receive may be published unless marked 'Not for publication', and we reserve the right to edit letters for reasons of space. We have received a note addressed to Help-line detailing a commercial service. Please note that the place for commercial services to advertise is in the classified section of ETI.

THE REAL COMPONENTS

Prepare to be LED along even stranger paths as John Linsley Hood tunnels his way into the eerie world of diodes.

looked, when I was describing how transistors evolved, at the basic P-N junction (Fig. 1). These are created by taking a rod, some 2-4 inches in diameter, of very highly purified silicon or other semiconductor material in single crystal form, and cutting it into slices with a diamond edged circular saw. The very thin discs so formed are cleaned and polished, and finally heated in a vacuum oven with a carefully chosen atmosphere so that selected impurities will diffuse into the semiconductor material to a precisely controlled depth.
Silicon is tetravalent, which is to say that the atomic structure is such that there are four surplus valency electrons present in the outermost electron shell within the atom. If one diffuses in a trace quantity (one or two parts per million) of an impurity such as

Fig. 1 A basic PN junction.
arsenic which is pentavalent (it has five outer orbital electrons), the net result will be that there are some 'spare' electrons floating around in the crystal structure.

We call such a material an N doped silicon, or simply N type. If the material is heavily doped, we call it $\mathrm{N}+$, if it is lightly doped we call it N - and so on.

Similarly, if we diffuse in boron which is trivalent (it has only three outer valency electrons), the result will be a number of holes where electrons should be, but are not. These holes behave like positive electrons, but are a bit more sluggish. This is because their movement takes place only as a result of an electron

Fig. 2 Voltage/current characteristic of a junction diode.
coming from somewhere else to fill the gap, leaving another hole where it had been, and so on. I like to think of this as a kind of electronic leap-frog.

When a P and an N doped semiconductor material are in contact, usually as a result of deliberately contrived impurity zones within the single crystal slice, there occurs a diffusion of these 'spare' electrons and holes across the junction. This leaves a depletion zone on either side of the notional junction region which is completely stripped of both holes and electrons, as shown in Fig. 1.

This depletion region is, therefore, effectively a nonconductor, so even in the conducting direction of the diode it is necessary to apply a certain forward voltage before any current will flow, to give the electrons enough kinetic energy to traverse the potential gap.

Fig. 3 Arrangements which can be used instead of a zener diode where a voltage drop is required in low noise circuitry.

The effect of this is to make the depletion zone appear to decrease in width, to the point at which it disappears when the forward conduction potential for the junction is reached. The converse is true for a reverse biased junction.

This results in the voltage/current graph shown in Fig.2a. A very important characteristic to note is that the forward voltage drop, Vf, for a diode connected in its forward biased mode is one of pure conduction and is therefore not very noisy, whereas operation in the reverse conduction mode is very noisy indeed.

So, when you need a voltage drop in low noise circuitry, use a string of forward diodes or an amplified diode' as shown in Fig. 3 rather than a zener diode, in which the conduction occurs as a result of reverse breakdown.
A consequence of the greater mobility of electrons and holes as a result of thermal excitation is that the forward voltage drop of a PN diode decreases with temperature. This seems to contradict the concept that the depletion region arises as the holes and electrons migrate across the junction, so that greater mobility of these should cause a wider depletion zone, but in reality the increased carrier mobility simply acts to lessen the forward bias which needs to be applied before conduction occurs.

However, an important feature of doped regions is that the width of the depletion zone at the junction decreases as the impurity concentration, and the consequent number of holes and electrons, is increased. This phenomenon is used in tailoring device characteristics, as shown later.

Small Signal Diodes

There are three different types in general use:-
Germanium point-contact diodes, useful for very low level signals in radio applications, but otherwise tending to become obsolescent.
Germanium diffused junction diodes, similar in characteristics to silicon ones, but with a lower forward voltage drop (0.15 V typically, as compared with 0.55 V for silicon), worse reverse leakage current (by a factor of about 1500 x), and worse temperature coefficient and maximum working temperature.

Silicon diffused junction diodes, such as the 1 N4148. These are inexpensive and very reliable (if from a good manufacturer), and can be used as low power rectifiers up to about 30 V RMS and 50 mA . Their four nanosecond recovery time (the length of time which it takes for the electrons and holes generated by current flow to recombine, so that the diode would be non- conducting in the reverse biased direction) limits their use to about 100 MHz . For higher frequency use more suitable diode types are available.

Power Rectifier Diodes

These are basically similar to the small signal diode. However, the power handling capability of the diode is determined by the maximum junction temperature, which, in turn depends on the conducting resistance of the diode which determines the power dissipation for any given current and the ease with which the heat generated in the junction can diffuse away. These will usually have a large junction area to minimise the conduction resistance, in good thermal contact with a metal plate or stud whereby the heat can be taken to some kind of heat sink.

Fig. 4 The sides of a high voltage rectifier chip are etched away at an angle to defiect electrostatic stress away from the edge of the junction.
Also, such diodes must be able to withstand a high reverse voltage. This is achieved partly by their junction geometry, as shown in Fig.4. In early designs of rectifier diode, it was noted that failure almost always took place at the edge of the junction area. If the sides of the chip are etched away at an angle, the electrical stress at the edge of the junction can be reduced so that this kind of breakdown is prevented.
The other technique employed is to keep the doping impurity levels relatively low, so that the depletion region is wider and the stress, per unit thickness, is consequently less. This, unfortunately, increases the resistance of the silicon per unit area with a consequently higher forward voltage drop - hence more thermal dissipation for a given current. In lower voltage rectifier diodes relatively high doping levels will be employed, simply to reduce the forward conduction power losses.

Avalanche Diodes

A further technique which is used in power rectifiers is to tailor the diffusion process and the doping levels of the P and N regions on either side of the junction so that the depletion region is very uniform in thickness. Then, provided that the doping levels are not too high, any carrier (electron or hole) entering the depletion region under conditions of reverse bias will be so accelerated that impacts with atoms will generate further electron-hole pairs. These, in turn, will be accelerated by the applied electric field and will collide with other atoms, giving rise to a situation very

Fig. 5 Voltage/current characteristics of a typical avalanche diode.
similar to that of an avalanche of rocks falling down a sloping hillside.

This process is known as ionisation but is most commonly seen only in gases, such as neon signs or sodium vapour street lamps.

The purpose of the avalanche diode approach is to avoid destructive damage to the rectifier occurring as a result of very short duration high voltage spikes. These arise all too frequently on power lines. A straightforward rectifier diode could break down under these conditions, and the very high temperatures generated by even small local current flow at high reverse voltages could fuse portions of the junction, leading to a short-circuit.
A typical voltage/current graph for an avalanche diode is shown in Fig. 5. In a well designed device, the reverse turn on is very abrupt and conduction will be distributed uniformly across the whole of the junction area.

Although a maximum static thermal dissipation of some tens of watts might be permitted for such a diode, this could well absorb a spike energy equivalent to tens of kilowatts for a duration of only a few microseconds without any harm.

Zener Diodes

These are very heavily doped diodes, with, in consequence, a very thin depletion region between the PN junction. The reverse bias electrical stress across this causes ionisation of the semiconductor material in the depletion zone, and consequent current flow. Beyond about 7V, zener diodes are not used. All of the socalled zeners above this voltage will, in fact, be avalanche diodes. As mentioned above, reverse leakage current is noisy, and a zener diode will make quite a good wide-band noise source.

The fact that zeners are all very highly doped tends to give them a low and fairly sharp turn-on characteristic in the forward direction, which can be useful.

High Frequency Diodes

The major requirements in this application are high carrier mobility and low junction capacitance. These

Fig. 6 Cross-sectional views of a) a normal Schottky diode and b) a hybrid Shottky device.
requirements are met fairly well by the old point contact or gold-bonded Germanium diodes, but the most commonly employed type nowadays is the Schottky diode, shown in Fig.6a. This relies only on majority carrier action (electron flow), and is, in consequence, fast in action. The snag is that there are sharp corners where the metal inlay abuts on the N type silicon slice, and the electrical stress at these points leads to a low reverse breakdown voltage which can be as little as 5 V . The advantages of this construction are that the forward voltage drop is reduced to some $180-220 \mathrm{mV}$, and that the operating frequency can be as high as 1820 GHz .
The electrical stress at the edges of the metallic layer in a Schottky diode can be lessened by the inclu-
sion of an annular ring of P-type silicon under the edge, as shown in Fig. 6b. However, although it can increase the reverse breakdown voltage to $60-70 \mathrm{~V}$, the maximum operating frequency is reduced to about 4 GHz . These are sometimes called hybrid Schottky diodes.

Depending on the construction employed, the junction capacitance can be as low as 1 pF - compared with $5-50 \mathrm{pF}$ for a standard small-signal silicon junction diode and $500-5000 \mathrm{pF}$ for a rectifier diode.

An important characteristic of diode behaviour, which influences pulse and switching performance in addition to RF behaviour, is the transient response of the diode junction. This is determined by a variety of phenomena such as:-

Fig. 7 Carrier storage following a reversal of the applied voltage in a PN junction diode.
Carrier storage, due to the minority carriers (holes) still left uncombined at the conclusion of a forward conduction period. This causes conduction to continue for a short period following a reversal of potential, as shown in Fig. 7a. The stored charge can be expressed in pico-coulombs (1 coulomb is the charge stored in a 1 farad capacitor at an EMF of 1 volt), and typical values are $100-10,000 \mathrm{pC}$.

Turn-on transient, due to the time taken for conduction to settle down to a steady value. Typically 10100ns for a small-signal silicon junction diode.

Voltage dependence of junction capacitance is a characteristic which is exploited in varicap diodes, but occurs in all reverse-biased PN junctions and has some of the characteristics of inductance.

Varicap Diodes

The capacitance of a reverse biased PN junction is, roughly, inversely proportional to the square of the

Fig. 8 The use of varicap diodes to provide remote voltage controlled tuning.
voltage across it. Such a diode appears to consist of two conducting regions separated by the depletion layer between them, which acts as a dielectric. Typical devices have capacitance values in the range $3-50 \mathrm{pF}$, depending on device and applied voltage.

The way in which they can be used as a remote voltage-controlled tuning element is shown in Fig. 8. Back-to-back connection is frequently employed where large signal levels are likely, to prevent the signal voltage itself from modulating the capacitance.
A similar type of construction is employed in the varactor diode, in which the diode is connected across an oscillator coil and the dependence of the capacitance on instantaneous voltage is used to generate harmonics of the signal.

Step Recovery Diode

This is a device which is designed, by geometry and doping levels, to have a very abrupt switching characteristic when the applied potential is reversed. It can be used to shock excite a coil into oscillation at a much higher frequency (up to the sixth harmonic) than the input voltage. This is useful for microwave signal generation, as is the impatt diode.

Impatt Diode

This is a device whose design is deliberately contrived to give a very wide depletion layer, assisted by the inclusion of a layer of intrinsic (un-doped) silicon, in the form shown in Fig 9a. When this is used in the type of circuit shown in Fig. 9 b ., quite useful amounts of microwave power (up to 1 W CW at 50 GHz , or 50 W pulsed) can be generated. The trepatt diode is a structural modification of this to cause bunching of the electrons, which allows some increase in power levels.

Fig. 9 The construction of an impatt diode and b) a microwave power oscillator using the device.

Gunn Diode

In spite of its name, this isn't really a true diode at all. Made from N-type gallium arsendide, it is what is known as a two-valley semiconductor in which the conduction band (that energy level in which the electrons can move as in a normal conductor) has two different levels, with different mobilities.

When current is caused to flow through a slice of this material between two ohmic contacts, the fast electrons overtake the slow electrons to form a bunch which travels through the slice. The result of this is an accumulation of charge at the cathode, until it neutralises the field due to the applied voltage at the contact. Charge accumulation then stops, and the charge domain then travels through the semiconductor slice in the form of a sharp spike of current at a speed
determined by the applied voltage. This process then repeats to generate a rapid series of such spikes.
Such devices are often used as the microwave power sources in such things as microwave Doppler intruder and fire alarms.

Tunnel Diodes

A decade or so ago, these devices were seen as the bright new hope for simple RF oscillator circuits. Unfortunately, their price never became low enough for them to achieve popularity, and they may soon become just a historical curiosity. They are based on the use of a very highly doped junction, with a consequent very thin depletion layer.

At very low reverse bias levels, the thermal energy of the electrons in the semiconductor is high enough for them to 'tunnel' through this depletion layer, and the junction conducts. However, as the reverse voltage is increased the thickness of the depletion layer increases, so the tunneling effect, even with an increased potential ditterence, begins to lose ground. The current then begins to fall as the potential is increased, giving what is known as a negative resistance characteristic .

In due course, the leakage current begins to increase once more leading to the type of reverse voltage/current graph shown in Fig 10. If this is connected in series with a coil as shown in Fig. 11, a simple HF oscillator circuit with a stable output voltage is produced. However, tunnel diodes are quite easily damaged by excessive currents.

Light Emitting Diodes

Apart from the ubiquitous transistor, this is, 1 think, the bit of modern semiconductor technology which has made the biggest impact on the public at large, as a long-life replacement for filament indicator bulbs.

These work because radiation is emitted by an atom when an electron, having been excited into a higher energy level by some input of energy such as a current, falls back into its original rest level; a similar mechanism operates when an excited electron falls into a hole. The process is known as electroluminescence.

Sinçe the light is emitted from the junction, the diode must be designed so that the light can escape, and usually they are encapsulated in a plastic moulding so designed that it acts as a magnifying glass with

FEATURE : Real Components

the junction at its focus. In order to get radiation emitted in the visible part of the spectrum, it is necessary to have a material with a large energy band gap, such as gallium arsenide (red), gallium arsenide phosphide (amber and yellow), gallium phosphide, (yellow or green, depending on doping).

Early LEDs were not very efficient in terms of the light output for current input, efficiencies of the order of 0.005% being not untypical. However, more modern 'high-brightness' LEDs can reach 3% efficiency, especially in the red coulours where they are beginning to compete with filament bulbs. Also, by tailoring the geometry of the device, semiconductor lasers are possible and these are used as the 'reading' device in compact disc players.

Care must be taken not to reverse bias an LED (light is emitted when current flows in the forward direction) since reverse breakdown will damage the device. An LED can be used on an AC source if it is shunted by an ordinary silicon diode as shown in Fig. 12.

Reverse Leakage

This is one of the major problems with semiconductor diodes, apart from reverse breakdown, and is strongly dependent on temperature. Such leakage currents increase by 10% for each $1^{\circ} \mathrm{C}$ rise in temperature, which means that the leakage current will double every $8^{\circ} \mathrm{C}$. This sets an upper limit for the use of germanium diodes at about $70^{\circ} \mathrm{C}$ and for silicon at about $160^{\circ} \mathrm{C}$.
Although diodes do not appear to have a lot to do

Fig. 11 (left) A simple HF oscillator circuit using a tunnel diode and Fig. 12 (right), driving an LED from an AC supply.
with ICs, most microcircuits are made on a substrate of silicon with all the bits of circuitry isolated from the substrate simply because they are sitting on top of a reverse-biased diode junction.

As I mentioned above, such leakage currents are noisy, and this was (and to a lesser extent, still is) the reason why low noise circuits built up from discrete semiconductors would often be better than their opamp equivalents. However, technology improvements have lessened this penalty, and nowadays, for most ', ractical purposes, if an IC is available to do the job it is not sensible to do it any other way.

Having said that, I propose to have a look next month at the world of the linear IC, with particular reference to the operational amplifier.

TURN YOUR BBC MICRO INTO A PROFESSIONAL MICROPROCESSOR DEVELOPMENT SYSTEM

THE OPERATING SYSTEM

- FLEX-The Professional Operating System
- Versatile, Flexible \& Powerful, the ideal operating system for industrial control
- Provides the power, sophistication and ease of development, previously only offered by larger, more expensive systems

THE HARDWARE

- 6809 Advanced 16 Bit Processor
- Choice of Industrial Interfaces for Target Applications: —High Resolution Colour Graphics
- Industrial input/output boards
- IEEE communications
- and many more

THE TOOLS

- PL9 - A fast, efficient control language
- CMS FORTH Interpreter \& Compiler
- Cross Assemblers for most 8 bit \& 16 bit micro's

- "C", BCPL, PASCAL

THE SUPPORT

- Top rate after sales technical support
- Systems/Hardware Design

NOISE ABOUT NOISE

In this personal view, hi-fi designer Neil Munro sounds off about about power supplies, capacitors and hi-fi designers with audible results.

Ihad always thought that the only real differences in pre-amps were down to hiss and the facilities offered, once adequate specifications had been achieved. But then, in between repairing and designing various small bits of hi-fi, studio and PA equipment for others, I knocked together a disc pre-amp for myself. I brought it to the shop where I was working at the time and one of the sales staff set it up for a comparison with a newly introduced, expensive commercial design. I sat down, closed my eyes and listened. To my amazement, my preamp gave a noticeably clearer and less cluttered performance. I could hear the difference.

Since both pre-amps used broadly similar circuitry (based on the NE5534 and TL072 op-amp chips), both had less than 0.01% distortion at normal levels and both had similarly accurate EQ, I had no idea why they should sound so different. I set about developing the design, replacing the moving magnet input with one for a moving coil cartridge. After playing with several ideas, I found the familiar LM394/NE5534 hybrid configuration worked well. Unlike a similar circuit by Barry Porter, published in ETI, December 1983, I filtered the supply

Fig. 1 Injecting modulation into power supply.
to the LM394 input' pair and was rewarded with perfect stability and a sensible slewrate. This MC circuit was predictably noisier than my original pre-amp but it sounded even clearer. I could easily tell if three or four voices were singing or if a guitar was nylon or steel strung.

This didn't seem to me to be entirely due to cartridge variations, since a very expensive commercial MM preamp was just as clear. I was puzzled. What was behind all these evident differences?

I checked for marginal stability in the 5534 circuit, but it was fine. I considered power supply rejection in the 5534 stage. The MC circuit used a 5534 stage and it
performed verywell. In fact, the 5534 has a stated power supply rejection ratio (PSRR) of $100 \mu \mathrm{~V} / \mathrm{V}$ and a stated common mode rejection ratio (CMRR) of 100 dB . But this started me thinking. The figures are referred to input and should be reduced by whatever gain follows. They're also quoted at DC. And then there was the fact that the MC circuit's gain comes mostly from the LM394 input 'pair' while the 5534's inverting and non-inverting inputs are fed from equal impedances-so that it should have an easy job.

I telt that I needed to check the real wideband PSRR referred to output, in order to get a true idea of what would happen when you actually listened to some music. I rigged up a power supply with a modulating input (Fig. 1), injected 1 V p-p on both the positive and negative supply rails and checked the output of the MM circuit. The modulation appeared at -30 dB to -40 dB . Taking into account an assumed figure -70 dBV for main supply noise, the modulation noise would drop to -100 dB to -110 dB when referred to a nominal 1 V output from the pre-amp.

This was good news. But when I came to replace the 330 ohm dummy load at the input to the pre-amp with a real MM cartridge (typically $500 \mathrm{R}+1200 \mathrm{mH}$), my jaw dropped slightly. In the $5-20 \mathrm{kHz}$ region, the modulated supply noise increased to -10 dB . With the power supply back to normal and the cartridge still in place, I found that high frequency input signals gave up to 3 mV or -50 dBV of rubbish, which could appear at the output at a worrying -60 dB . On the other hand, when I came to test the MC circuit I found that it fared well with a real cartridge in place (these are predominantly resistive at between 3 R5 and 30R. It was even acceptable open circuited: -30 dB to -40 dB except at 20 Hz (and this was cured by enlarging the input coupling capacitor and using an active filter for the LM394 stage). The trouble with that capacitor was that low frequency reactance caused an impedance mismatch which reduced CMRR. And on reflection, I realised that it was the inductance of the $M M$ cartridge that caused a mismatch on the inverting and non-inverting inputs to the 5534 op -amp, which ruined the PSRR and CMRR figures for the MM circuit (Fig. 2).

Fig. 2 PSRR test circuit with MM cartridge.

The Heart of Noise

These things were all curable, yet they didn't reach to the heart of the problem-the power supply noise in an actual circuit. Clearly, the first place to look for noise in a regulated power supply is the regulation itself. I was using 78/79 types and, as luck would have it, their quiescent noise ($20-20 \mathrm{kHz}$ hum and hiss) was -70 to 80 dBV . Later, 1 bought a batch for evaluation and found that some showed as much as -40 dBV and often came complete with nasty splutterings.

But that's only part of the story. In operation, active circuitry tends to draw varying current. In Class A amplifiers, this is in step with the signal, but in Class B it becomes half-wave rectified as the positive and negative sections of the audio signal are driven into low impedance loads. The output impedance of the supply and the impedance of intervening wires and connectors become important, introducing modulation on the IC terminals. From this point-of-view, the quality of the power supply is irrelevant. What matters is the modulation.

The all-too-common practice of decoupling with a filter (typically, composed of a 10R resistor and 10uF capacitor) can actually make things worse because it assumes that the local signal common is 0 V . But conventionally, the 0 V rail is also signal common and should be treated as a signal path. You wouldn't connect capacitors from the supplies to the actual signal path, because they will inject noise and modulation rubbish into it which, because of the practical finite impedance of the signal path, will produce a potential that adds to the signal output.

A $10 \mu \mathrm{~F}$ capacitor also has an impedance of 8 ohms at 20 kHz , so signal modulation will be worse. Using a larger capacitor, say $470 \mu \mathrm{~F}$, will help-but at the cost of injecting noise more efficiently (Fig. 3). The only really effective approach - if an expensive one - to ensuring stability on the signal common is to use local active regulation. Even here, care must be taken to avoid injecting DC or other noise into signal common.

Another problem resulting from the finite impedance of signal common is that heavy load currents will generate errors. This is usually inoffensive from an acous-

Fig. 3 PSU noise resulting from impedance of leads and signal common corruption in class AB out-put stage.
tic point-of-view, but with disc input stages the feedback current is the pre-emphasised version of the signal with high frequencies boosted. The result can be nasty harsh noise when added to the equalised output. There are several methods for avoiding this - the use of true independent supplies in different stages, differential sensing of output, shunt feedback or 0 V regulation. I chose the last of these as it kills two birds with one stone (Fig.4). The feedback is handled by a local op-amp that transfers it to the opposite supply line instead of signal common - effectively reducing signal common impedance to the output impedance of the op-amp (for

Fig. 4 Constant current series feedback giving $0 V$ regulation.
$1 / 2 \times 5532$ in unity gain configuration this is 10 milli ohms, rising to 30 milli ohms at 20 kHz). Also, the increase of current in the stage output is complementedby a reduction in the OV regulator - which means that while the amplifier is operating in Class A mode (about 99\% of the time), overal current consumption is constant.

This is especially important in a modular design like ours, using stage connectors, since the power supply modulation is negligible.

My comments on the 5534 op-amp and the 78/79 series voltage regulators are not intended as slagging. I'm sure the original designers would fall about laughing if they saw some of the uses these devices are put to. The

Fig. 5 Suggested PSU regulation circuit.
78/79s are perfectly good general purpose regulators, but they're not intended for precision supplies. The computer-optimised LM340 series (for example, the LM34OT-15) are consistenly better, though the complementary LM320 series is rather expensive for negative supply regulation. The LM337 series are better value, especially if TL07 2 s are used, since their negative supply input is very noise sensitive. The 5534 is an excellent line processing block when driven from lowish kilohms with clean supplies. The power supply circuit shown (Fig.5) has noise in the $20-20 \mathrm{kHz}$ range better than -80 dBV with 100 mA drawn and an output impedance of around OR3 at 100 kHz thanks to the $470 \mu \mathrm{~F}$ output capacitors.

On the general topic of power supply decoupling, the use of separate filters for each channel is not recommended. It would be rather like isolating two people with the same contagious disease - it doesn't cure either of them. It's actually useful to have two channels sharing the same supply at each stage, since one can be driven with a signal and the other used to detect any noise generated in the process.

A Couple of Points

And now to capacitors. A 1958 Radio \& Electronics handbook that I unearthed has an excellent section on power supply topography and mentions that paralleling a $220 \mu \mathrm{~F}$ electrolytic with a 100 nF film type overcomes some of the problems connected with the equivalent series resistance (ESR) and leakage of the electrolytic. I was giving my mother hell for bringing me into the world when that was written and it still applies if you're talking about the stability of wideband amplifiers-as long as the bypass capacitor is placed close to the circuitry not the power supply. But anyone who believes that such bypassing has a significant effect in the audio band either hasn't bothered to look into the characteristics of modern electrolytics or is still using 27 year old ones!

For example, the $220 \mu \mathrm{~F} / 16 \mathrm{~V}$ cap used in my power amp feed back decoupling has an ESR of 0.3 to 0.4 ohms at 20 kHz and $15^{\circ} \mathrm{C}$ (it was winter!). A 470 nF polyprop/ polyester/polyanything has impedance of 17 ohms under the same conditions - so what's bypassing what? It's only when you get above the 500 kHz range that inductive reactance starts taking over and the impedance of electrolytic and film cap begin to match. Bypassing at ICs can be important because inductive suplies in the MHz region can easily cause instability, but $10-47 \mathrm{nF}$ is quite adequate, cheaper and lessens noise injection into signal common.

And then you should be asking yourselves, why the pursuit of pure capacitance in coupling components? Ideally, a coupling component should block DC and have zero or constant impedance from at least 20 Hz up to 20 kHz . A perfect capacitor would do the former but would have 1000:1 variation in impedance over the audio band. Admittedly, in dB terms this variation is miniscule, but the point still stands. Now, a large electrolytic can approach the second requirement for a coupling component. The variation of impedance with frequency in an electrolytic is not simple and there is a 'break' frequency at which the slope flattens out. The electrolytic can be chosen so that this frequency is very low and in the critical mid to high frequency area ESR is practically constant. Inductive reactance is negligible below about 500 kHz in any reputable make of capacitor in the sub $1000 \mu \mathrm{~F}$ range.

So why do electrolytics sometimes sound odd? I've found that ESR can vary, particularly with temperature, by up to 0.1 ohms. In conjunction with a 10R resistor - as in all too many MC inputs (Fig.6) - the variation can amount to-40dB. With considerably higher resistances (above 1 kilohm), this figure drops to -80 dB or so.

Voltage modulation can also affect the performance of coupling electrolytics. In a competently designed circuit an electrolytic is operated well above its break frequency so that the voltage drop across it is a small fraction of the applied voltage - at most hundreds of millivolts. I have found no evidence of acoustic effects at this level. Even these slight reverse voltages can be eliminated by using predictable offsets to polarise the electrolytics to the peak expected reverse voltage. We have done this with ourdesign, and while l'm not convinced that it has any significant impact, it certainly does no harm (Fig. 7 and 8).

Fig. 6 ESR variation in electrolytics - typical configurations.

Electrolytics may also suffer from microphony-a feature used to positive advantage in capacitor microphones. At $200 \mu \mathrm{~V}$ sensitivity, microphony in input and feedback capacitors in an MC input stage is hardly surprising, although it varies with type and make. Generally, tantalums produce a'boing' while aluminium electrolytics give a dulleridumph' - which may explain why tantalums are out of favour. In both cases, mounting in a dollop of silicon rubber helps enormously, damping the resonance due tovibration of the body relative to the leads. Incidentally, other components can suffer from

Fig. 8 Basic configuration of power amp module.
microphony - particularly FETs. It can be helpfulto gently tap all components with a plastic pen to test them.

When it comes to power amp main capacitors, bypassing becomes even sillier. To achieve 100 miliohms at 20 kHz would require $80 \mu \mathrm{~F}$ of pure capacitance (can I speak to the bank manager, please?). There is no substitute for low ESR electrolytics, now widely available thanks to their development for switchmode power supplies. Sprague, Mullard, STC and RIFA all do $10,000 \mathrm{uF} 63 \mathrm{~V}$ types with a specified maximum of 26 milliohms at 10 kHz . In most cases a few inches of wiring is enough to equal that.

Stiff and Nonsense

Before getting obsessed with basic power supply impedance, it's useful to stop and ask, 'why does it matter?'. In a sense, the only power supply to an amplifier is usually the mains, conditioned as required for the sake of convenience so that an input voltage can control this power source to produce an analogous output. All too often, designers - especially the strange hi-fi breed become obsessed with the intermediate energy store (that's all a PSU is) and do not view the systems as a whole. So we get beliefs about 'stiff' supplies using massive transformers and capacitors with the idea that this will achieve quality, not just (overkilled) quantity. Once you realise the irrelevance of this, you can start investigating what it is about the intermediate store that corrupts the process by which it is controlled by an audio input voltage.

There are many more complicated factors than the ones I've been able to deal with here: induced coupling from supply and load cables to the input stage, transformer induced hum, the accuracy of reference points, as well as capacitative coupling and voltage modulation. Voltage modulation is crucial - which seems blindingly obvious to me since, if the power rails are jumping up and down, then they will hinder the 'brains' of the operation in carrying out its task. The most effective way of preventing this happening is to regulate the driver section and only let the outputstage suffer the abuses of a jumpy supply (Fig. 8). In our design, this results in crosstalk
noise on one undriven channel of -110 dB at 20 Hz while the other channel is delivering 75 W into 8 ohms. As I mentioned earlier, in connection with the pre-amps, a common supply is used for both channels, so the figure shows true rejection capabilities.

As with all engineering, there is no 'right' answer to the subtle problems of audio design. There are only better answers judged against a whole range of criteria: subjective sound quality, cost, reliability, consistency, availability of components and, for a commercial product, appearance and the quality of the finish. As for the designer's ego - well that can be massive. An important part of designing is to get an'objective' assessment of the results of process. It's too easy to convince yourself that a technique will improve performance and so find, through your prejudice, that it does. It's equally easy to find yourself not knowing when to stop developing a design, even though the improvements you are making no longer affect the final sound.

I've concentrated on power supplies because far too often theyare just an afterthought tacked on to some sophisticated low noise, ultra low distortion circuit. In reality, the PSU and the circuit itself are complementary and must be designed together taking only the mains AC input as given - warts and all.

The thing I find most astonishing is that all this is well known. That 1958 book I mentioned analyses power supply design and the various corruptive possibilities very clearly. Yet too many designs still completely overlook these things. Part of the blame, surely, lies with the approach to ICs that takes them as perfect circuit building blocks. It's an approach encouraged by the very existence of ICs. Using them, you can throw a circuit together that will work fairly well. Using discrete components requires understanding to get the circuit to work at all. The pay-off is that the shortcomings of your design are far more obvious. Although a contented user of ICs, I strongly recommend that fulldata and internal circuts be consulted and that the chips are treated not so much as ICs but as CIs - circuits that have been integrated, a subtle but philosophically fundamental difference.

ETI

SERVICE SHEET

Enquiries

We receive a very large number of enquiries. Would prospective enquirers please note the following points:

- We undertake to do our best to answer enquiries relating to difficulties with ETI projects, in particular non-working projects, difficulties in obtaining components, and errors that you think we may have made. We do not have the resources to adapt or design projects for readers (other than for publication), nor can we predict the outcome if our projects are used beyond their specifications;
- Where a project has apparently been constructed correctly but does not work, we will need a description of its behaviour and some sensible test readings and drawings of oscillograms if appropriate. With a bit of luck, by taking these measurements you'll discover what's wrong yourself. Please do not send us any hardware (except as a gift); - Other than through our letters page, Read Write, we will not replyto enquiries relating to other types of article in ETI. We may make some exceptions where the enquiry is very straightforward or where it is important to electronics as a whole;
- We receive a large number of letters asking if we have published projects for particular items of equipment. Whilst some of these can be answered simply and quickly, others would seem to demand the compiling of a long and detailed list of past projects. To help both you and us, we have made a full index of past ETI projects and features available (see under Backnumbers, below) and we trust that, wherever possible, readers will refer to this before getting in touch with us.
- We will not reply to queries that are not accompanied by a stamped addressed envelope (or international reply coupon). We are not able to answer queries over the telephone. We try to answer promptly, but we receive so many enquiries that this cannot be guaranteed.
- Be brief and to the point in your enquiries. Much as we enjoy reading your opinions on world affairs, the state of the electronics industry, and so on, it doesn't help our already overloaded enquiries service to have to plough through several pages to find exactly what information you want.

Subscriptions

The prices of ETI subscriptions are as follows: UK:
Overseas
£16.30
£18.30 Surface Mail
$\$ 24.00$ Surface Mail (USA) £43.30 Air Mail
Send your order and money to: ETI Subscriptions Department, Infonet Ltd, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire, HP1 1 BB (cheques should be made payable to ASP Ltd). Note that we run special offers on subscriptions from time to time (though usually only for UK subscriptions, sorry).

ETI should be available through newsagents, and if readers have difficulty in obtaining issues, we'd like to hear about it.

Backnumbers

Backnumbers of ETI are held for one year only from the date of issue. The cost of each is the current cover price of ETI plus 50 p, and orders should be sent to: ETI Backnumbers Department, Infonet Lid, Times House, 179 The Marlowes, Hemel Hempstead, Hertfordshire HP1 1BB. Cheques, postal orders, etc should be made payable to ASP Ltd. We suggest that you telephone first to make sure there are still stocks of the issue you require the number is $(0442) 48432$. Please allow 28 days for delivery.

We would normally expect to have ample stocks of each of the last twelve issues, but obviously, we cannot guarantee this. Where a backnumber proves to be unavailable, or where the issue you require appeared more than a year ago, photocopies of
individual articles can be ordered instead. These cost $£ 1.50$ (UK or overseas surface mail), irrespective of article length, but note that where an arti cle appeared in several parts each part will be charged as one article. Your request should state clearly the title of the article you require and the month and year in which it appeared. Where an article appeared in several parts you should list these individually. An index listing projects only from 1972 to September 1984 was published in the October 1984 issue and can be ordered in the same way as any other photocopy. If you are interested in features as well as projects you will have to order an index covering the period you require only. A full index for the period from 1972 to March 1977 was published in the April 1977 issue, an index for April 1977 through to the end of 1978 was published in the December 1978 issue, the index for 1979 was published in January 1980, the 1980/81 index in January 1982, the 1982 index in December 1982 the 1983 index in January 1984 and the 1984 index in January 1985. Photocopies should be ordered from: ETI Photocopies, Argus Specialist.Publications Ltd, 1 Golden Square, London W1R 3AB. Cheques, postal orders, etc should be made payable to ASP Ltd.

Write For ETI

We are always looking for new contributors to the magazine, and we pay a competitive page rate. If you have built a project or you would like to write a feature on a topic that would interest ETI readers, let us have a description of your proposal, and we'll get back to you to say whether or not we're interested and give you all the boring details. (Don't forget to give us your telephone number).

Trouble With Advertisers

So far as we know, all our advertisers work hard to provide a good service to our readers. However, problems can occur, and in this event you should: 1. Write to the supplier, stating your complaint and asking for a reply. Quote any reference numberyou may have (in the case of unsatisfactory or incomplete fultilment of an order) and give full details of the order you sent and when you sent it.
2. Keep a copy of all correspondence.
3. Check your bank statement to see if the cheque you sent has been cashed.
4. If you don't receive a satisfactory reply from the supplier within, say, two weeks, write again, sending your letter recorded delivery, or telephone, and ask what they are doing about your complaint.

If you exhaust the above procedure and still do not obtain a satisfactory response from the supplier, then please drop us a line. We are not able to help directly, because basically the dispute is between you and the supplier, but a letter from us can sometimes help to get the matter sorted out. But please, don't write to us until you have taken all reasonable steps yourself to sort out the problem.

We are a member of the mail order protection scheme, and this means that, subject to certain conditions, if a supplier goes bankrupt or into liquidation between cashing your cheque and supplying the goods for which you have paid, then it may be possible for youtoobtain compensation. From time to time, we publish details of the scheme near our classified ads, and you should look there for further details.

OOPS!

Corrections to projects are listed below and normally appear for several months. Large corrections are published just once, after which a note will be inserted to say that a correction exists and that copies can be obtained by sending in an SAE.

AM/FM Radio (November 1984)
In Fig. 2, the oscillator and IF sections should be shown connected to ground; the PC:B is correct. In Fig. 4. C31 should be 10 n to give the 75 us deemphasis shown in Fig. 3, but $4 n 7$ has been found to give a brighter midrange. R38 in fig 5 should, of course, be 820 k rather than 280 k and it and the bottom end of C38, C44 etc should be shown connected to ground. In the construction section on page 25 , four pieces of 8 mm plywood are mentioned but in fact only three are needed - the fourth side is the front panel. See also the note in December News Digest regarding availability of the inductors.

Digital Control Port (November 1984)
The second sentence in the "Testing" section on page 30 should include the words ' without any ICs in place.'In the second paragraph of that section, the check for +5 V should be made on pin 3 of IC101. not IC1. At the bottom of the first column on page 31 , the last sentence should finish with $B 3=0$.

Video Vandal (November 1984)
In Fig. 8 on page 54, R16 and R17 should be shown connected to the base of Q4, and C12 and SW2 should be in the D output line rather than the OV line. It may also be beneficial to add a diode across R3 with its anode connected to the slider of RV1. In Fig. 10, R52 and LED2 are shown connected across the +12 V supplybut it is bettertoplace themacross the -12 V supply so as to even-up the dissipation in the ICs.
Electron Speech Board (November 1984)
In the parts list on page 58, IC3 should be listed as a 74LS273.
Digital Delay Line (December 1984 - January 1985) In Fig 6 on page 21 of the Decemberissue, C19 and C20 are both 100uF. In Fig. 8 on page 62 of the January issue, C3 should be marked 33 p. On the overlay diagram (Fig. 9, p.64), R37 is missing and should be connected between pin 3 of IC9 and the OV line; R20 is missing and should be located in the holes immediately to the left of R18; R50 is missing and should be connected between pins $1 \& 2$ of IC14. Some components on the overlay have also been wrongly numbered:- C20 should be marked C19 and C21 should be marked C20; R12 (between ICs 5 \& 6) should be marked R22; R48 should be R44, R49 should be R45, R57 should be R46, R51 should be R47, R50 should be R48, and R47 should be R49. The unmarked capacitor directly above what is now C 19 is an un-numbered 100 n ceramic. C30 does not appear on any diagramor parts list and this is correct.
"Sonneti" Combo (March 1985)
The foil pattern on the overlay diagram has been shown as though from the copper rather than the component side. The foil is correctly shown on the Foil Patterns page from the copper side.

VCDO (March 1985)

RV2 should be 10k (right in parts list, wrong on circuit diagram).

Single Board Controlier (March 1985)
There were a number of errors in the parts list. RP2 is listed as a 10 k SIL pack but is actually four separate resistors, and the same applies to RP3. RP4 is also listed as a SIL pack but should consist of seven commoned resistors. R13 is always required, not just when a cassette interface is used as stated.

Heat Pen (June 1985)
The instruction in the penultimate paragraph on page 49 should read "....adjust RV2 for 2.73 V ..."' not 2.37 V as stated.

THE JOB MARKET

Gerry Kelly and Ted Wood investigate the claims and counterclaims about the growth of the British electronics industry and the jobs it will create, concentrating on Scotland in this article.

Scotland's growing microelectronics industry put another feather in its cap on 17 April this year. At a press reception held at the Scottish New Towns London Office, it was announced that EKC Technology Inc., which operates six manufacturing and distribution facilities in California's Silicon Valley, is to set up a plant in East Kilbride. East Kilbride is a growing new town and part of Scotland's attempt to be the California of Europe ('Silicon Glen' its promoters call it). Along with other Scottish new towns it has already attracted large amounts of foreign investment.

At the reception we were treated to a slide show and talk on the success story of East Kilbride, glossy brochures outlining its attractions to prospective investors, large amounts of food and drink and much heavy glad-handing from John Housley, EKC's VicePresident Marketing. On the way out we got an armful of freebies, including a miniature bottle of'Spirit of East Kilbride' scotch.

The setting up of EKC's plant is undoubtedly important to both East Kilbride and the semiconductor industry in Scotland. The photoresist strippers they produce will contribute substantially to the infrastructure of the industry. As J. Allan Denholm, Chairman of East Kilbride Development Corporation, puts it: 'The decision by EKC to locate here confirms our role as Scotland's leading centre for overseas investment and adds a new dimension to our growing contribution to a Scottish production chain that goes all the way from raw silicon production to wafer fabrication, contract assembly, test and packing and printed board assembly.'

JOB TITLE
AVERAGE HOURLY WAGEE (Exc. Shift and Overtime)

General Production	East Kilbride	Scotland
Assembler		
Assembler (senior)	1.75	2.44
Forklift Truck Driver	1.85	2.65
Goods-in Inspector	2.20	2.38
Grinding Machine Operator	2.60	3.17
Lathe Operator (Turner)	3.00	2.45
Machine Shop Inspector	3.00	2.76
Machine Too Setter	3.25	2.58
Maintenance Electrician	3.20	2.75
Milling Machine Worker	2.50	3.08
Plant Labourer	3.30	2.48
Radial Drill Operator	2.00	2.40
Semi-Skilled Production	2.30	2.42
Operator	2.10	
Storeman	2.20	2.85
Tester	2.70	2.53
Toolmaker	3.20	3.40
Welder	3.20	2.90
		3.14

Wage rates for unskilled and skilled workers in East Kilbride (figures from the East Kilbride Development Corporation, 1984).

The rub is that EKC's investment, an initial $£ 1$ million plus government grants (the amount of which John Housley was very reluctant to reveal) will produce or'y 25 jobs over two years, 'dependent on the marke

That seems to fit in with a general pattern of one British electronics industry. While seeing increased investment and output, it seems to be failing to create jobs on anything like the scale needed to replace those lost through the decline of traditional industries.

Awkward Questions

A week before the EKC reception a report was published which not only highlighted this problem but also asked some rather awkward questions about the electronics industry. The mention of its name at the Scottish New Town's London Office was about as welcome as Princess Michael's father at a Buckingham Palace garden party. The Scottish Development Agency was moved to issue a statement criticising it as ill-informed and misleading.

Published by Scottish Education and Action For Development, the report - entitled 'Electronics And Development: Scotland And Malaysia In The International Electronics Industry' - has little doubt that, in Scotland at least, 'the electronics industry cannot be expected to make a major contribution to meeting (the) future need for jobs.'

Scotland's electronics industry now employs around 43,000 people. In 1949 there were only 5,000. But as Scotland has lost 200,000 jobs in manufacturing and mining in the last decade, employment provided by the electronics industry will obviously not fill this massive gap. The SEAD report states that'some experts believe that the industry will do well to increase its labour force by $7-8,000$ by the end of the decade.'

The conclusion seems to be that the electronics industry, as it becomes more capital intensive and automated, will provide only a small increase in jobs. On a larger scale than EKC, National Semiconductor proposed a $£ 100$ million investment in Greenock, another of the 'Silicon Glen' towns. This has been postponed, but in any case would have created only 1,000 jobs. Motorola, the 'jewel in the crown' of East Kilbride, are investing $£ 60$ million in an automated assembly plant which will provide only 800 jobs.

This is all part of the general trend in British electronics. In a paper published in 1983 - entitled ' Policy for the UK Information Technology Industry' - the NEDC Information Technology Sector Working Party admitted that 'the UK employment implications of current trends in Information Technology are not encouraging. The overall decline in employment levels' said the paper,'.... is unlikely to be arrested.' The Sector Working Party's best hope was that the industry might contribute indirectly to the creation of new jobs in service industries.

Boom And Gloom

This gloomy prognosis is backed up by Luc Soete in the third volume of Gower Publishing's 'Technological Trends and Employment' series, Electronics and Communications.
'Despite the UK electronics industry's remarkable output growth pattern pointing directly to the significant of the sector as a"motor" for the economic recovery, first estimates of employment suggest that this boom has been accompanied with little employment creation.'

While Soete concludes that the potential for job creation is still considerable, taking the 'optimistic scenario', the growth in electronics employment does not compensate for the loss of jobs in the rest of engineering. The respective figures are $+70,000$ and $-81,000$. The 'pessimistic scenario' sees employment in the rest of engineering as declining by more than 350,000 by 1990 , while the compensation in increased electronics jobs is only 15,000 . The NEDC Sector Working Party's paper agrees with a pessimistic forecast of a decline in employment in the UK IT manufacturing industry.

Any estimate has to assume an ability on the part of the electronics industry in Britain to combat foreign competition. According to Luc Soete, 'it is still debatable how farimport penetration or fiercer competition on the UK export markets could curb the UK Industry's growth potential and press towards a speedier introduction of labour saving rationalisation investment.' The NEDC paper says that although the UK IT industry has strengths, 'these strengths in isolation are not however sufficient; they need to be brought together not least by industry itself into a national policy if the industry is to prosper.'

In the IT sector, UK companies have a minority share in most of the UK's markets while foreign-owned multinationals have the majority. The British companies are structurally weak in comparison with their foreign competitors and there seems little chance that their performance will improve drastically. According to the NEDC SWP, the target for the UK IT industry, as part of a national policy, should be to break even on balance of trade by 1990. A modest enough goal.

In Scotland, by the Scottish Development Agency's own reckoning, Scottish owned firms account for only 16.5% of employment in the electronics industry. The semiconductor industry is wholly foreignowned, with five US firms providing 90% of the jobs and one Japanese company supplying the other 10%. Leading US firms also figure prominently in the information systems sector in Scotland (including IBM, DEC, Honeywell, Burroughs and Wang) though new Scottishbased firms have emerged here. Meanwhile, Scottish Education and Action for Development argue that the 'complete dependence of Scotland's semiconductor industry on a small number of companies.... has prompted fears for the long term future of the industry in Scotland.'

All Work And No Pay?

But whatever the arguments about the long term prospects for employment creation in electronics, in the short term jobs themselves don't seem to be the priority. One of the attractions East Kilbride offers investors is wage rates significantly lower than in the rest of Scotland (see Table). Where comparatively good rates operate, this is due to one fact alone: 'the biggest union in the town is the Amalgamated Union Of Engineering Workers.' (Note that assemblers are mainly women). The Scottish New Towns as a whole boast of alow level of unionisation and generally'trouble free' factories.

Many of the US companies in Scotland have a record of anti-unionism. Having resisted unions' attempts to organise in 'Silicon Valley', they are hardly likely to welcome them in 'Silicon Glen'.

When asked about this, John Housley of EKC commented that, although company policy was not antiunion, EKC in the States is non-union because 'none of our employees have expressed the desire to join.' He followed this with the ambiguous assertion that companies who got the union in, generally deserved it. Significantly union membership is also particularly low among electronics workers in the London-Bristol corridor.

While some would argue that any employment is good employment, the quality and conditions of work should also matter. More often than not these things are determined by the presence of trade union organisation. This, at least, is the view held by Scottish Education for Action and Development:
'In the most practical terms the absence of trade unions leaves the workers vulnerable to company pressure to fit in with changes in working practices, such as new shift arrangements or short-term contracts. It may make them frightened to speak up on health hazards for fear of losing their jobs. In periods of recession it leaves them dangerously exposed to the company's need to adjust it's costs.' For some, however, such considerisations are secondary. 'Speaking personally,' said Alistair Dalziel, of the East Kilbride Development Corporation, 'I don't think it matters'. He was replying to our questioning the amount of employment the Scottish eletronics industry is creating. 'It's the investment that matters.'

ETI

08CILLOSCOPES CO880R CDU 150. Dual Trace 35 MHz Solid State. Portable. 8x 10 cm display. With manual. \qquad 2200 8.E LABS 8MIII. Dual Trace 18MHz Solid State. Portable AC or External DC Opera-	NEW EOUIPMENT HAMEG OSCILLOSCOPES 605. Dual Trace 60 MHZ Delay Sweop. Component Tester HAMEG OSCILLOSCOPE 203.5 Duni 1515 20MHZ Compontent Tester 8270
TELEOUIPMENT 854A. Single Trace 10 MHZ. Solid State. With manual \& 110 TELEOUIPMENT D43. Dual Trece 25MHZ. With manual. TELEQUIPMENT \$43. Single Trace 25 MHZ. With manual.	BLACK STAR FREOUENCY COUNTERS. PAP $E 4$ Meteor 100-100M HZ ,....ss9 Meteor $600-600 \mathrm{MHZ}$..... 126 Meteor 1000-1GHZ 175
EX-MINISTRY CT436. Dual Beam 6MHZ. Size $10 \times 10 \times 16$ ins. With manual $£ 75$ NEW PROBE8 AVAILABLE. Switched $\times 1$; $\times 10$. \qquad \&11	HUNG CHANG DMM 6010. $31 / 2$ digit. Hand heid 28 ranges including 10 Amp AC/DC. Complete with batteries \& leads. p\&p £4 ... 233.50 MULTIMETER type U4324. 33 Ranges. Complete \qquad ع16
MULTIMETER8 UNBELIEVABLE	
	ADVANCE AM/FM Sig Gen type SG63 7.5 - 230 MHZ AVANCE AM Sig Gen tyoe SG62 150 KHZ . 220 MHZ £36 PHILIPS WOBBULATOR GM877S. $5-220 \mathrm{MHZ}$ \& $440-880 \mathrm{MHZ} \mathrm{e} 65$ LABGEAR COLOUR BAR GENERATOR Type 6037 £6O. PAPES LABGEAR CROSSHATCH GENERATOR CM6004 £15. PAPE2
PHILLIPS DMM2517. 4 digit. Auto ranging. Complete with batteries \& leads. (Un-used).. AVOTEST SET No. 1 (Similar to Avo8 Mk3). Complete with batteries. leads \& Carrying Case ..icketer (Analogue) 30 ranges. Complete with batteries \& leads ...E25 AVO 72 - Similar to above but no AC Current range. With Batterwes \& Leads	
35% " FLOPPY DISK DRIVE 8 TANDOM $1 / 2$ Height. Brand Now Single Sided Double Density 870 Double Sided Double Density 100 SHUGART type SA460. Double Sided. Double Density. 80 Track. Ex-eq........... 875 P\&P all drives ES_{5}	$\begin{aligned} & \text { NOW ONLY E12 } \\ & \text { PEP E3 } \end{aligned}$ AVO TRAN8ISTOR TESTER TT180 Handhetd. GO/NOGO for In-situ Testing. Complete with Batteries, leads 8 instructions
THIS 18 A VERY SMALL SAMPLE OF STOCK, 8AE Or Telephone for LISTS Please check svailability before or dering. Carriage all units §12 VAT to be added to Total of Goods 8 Carriage.	MAINS ADAPTOR. New. 240V input 9V DC 600MA Output. Plugs directly into 13A Socket. P\&P $£$ c5 ee. DELPAK D15-200 POWER SUPPLY MODULE. Encapsulated Ex-eq. 210-250 Input. +/- 15 V 200MA Ouptut. PAP $£ 2$ \qquad
STEWART O 110 WYKEHAM ROAD, REA Telephone: Callers welcome 9am to 5.30 pm	F READING ADING, BERKS RG6 1PL 73468041 Monday to Saturday inclustve

THE NUMBER
 JUNGLE

A lot of people have written to us asking for an explanation of the numbering systems used on ICs and other semiconductors. John Linsley Hood, something of an expert on components as his continuing series proves, has put together the following guide.

Abstract

Integrated circuits are the easy route to circuit design, since many clever engineers have thought out neat ways of achieving the desired end, in conveniently packaged and often quite inexpensive circuit blocks. However, there are two main snags. The first of these is knowing which is the right IC to use, and the second, when this problem has been solved, is to decide which version of the IC in question is the device one wants.

The circuit diagram may show a 741, but the catalogue lists a whole range of these from

Prefix	Manufacturer
AD	Analog Devices
AM	Advanced Micro Devices
CA	R.C.A.
DS, LM, LF, LH	National Semiconductor
DG	Siliconix
H, HA, HI	Harris
HA	Hitachi
ICL, ICM	Intersil
IR	International Rectifier
MC	Motorola
OP, PM	Precision Monolithics
N, NE, SE	Signetics (Mullard)
RC, RM	Raytheon
SG	Silicon General
SL, SP	Plessey
SN, TL	Texas Instruments
MA	Fairchild
UCN, UDN, ULN	Sprague
XR	Exar
Z, ZD	Ferranti

Table 1 The codes used in the manufacturers prefix. These form the first group of letters in an IC type number, appearing before the number itself.

Suffix

1 (Harris only)
M (2 for Harris, 54 for TTL)
1
C (5 for Harris, 74 for TTL)

Temperature range
$-55^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Table 2 Permitted temperature range. One of these letters (or numbers in the case of Harris ICs and TTL) will usually appear immediately after the IC number.

MC1741SCG to LM1741CJ-14. What does this mean? And the problem doesn't stop there, there are all the digital ICs too.

Well, to start with, the first two letters in the specification refer to the maker of the device. MC, for example, refers to Motorola, $\mu \mathrm{A}$ to Fairchild, and so on. The letters at the end of the specification refer to the packaging, the temperature range for permitted operation, or the reliability guarantee. Here C stands for commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ and M for military $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$, which will be a whole lot more expensive. Say $£ 15$ for the military version, as compared with 40 p for the plastic encapsulated commercial device.

Transistor type designations are a good bit simpler since they do not usually have a prefix identifying the maker or a suffix specifying one of a range of package forms. The package is usually implied by the actual type number of the transistor. Unless they are very popular devices, like a BC109 or a BC212, a particular transistor will only be available from one or maybe two manufacturers.

The BC type designation is, incidentally, a european Pro Electron designation, which actually gives a description of the general type of the device in its letters. The USA JEDEC listing, 1 N -, 2 N - and 3 N -, only refers to the time at which that particular device was registered with the US military authorities, so a 2 N5068 is a much more recent device than a 2N697.

There is, however, a small measure of type identification in that 1 N -means diodes, 2 N -means bipolar or junction field-effect transistors and 3 N - means MOSFETS. United States sourced transistors (and ICs) are usually second-sourced (which means that there are at least two manufacturers), whereas the Pro Electron devices may come from one manufacturer alone. This is awkward if some inconsiderate designer (like me) specifies a favourite device such as a Motorola BC449 which is probably not stocked by Bloggs Radio just round the corner, though they could have supplied a BF257 which might, at a pinch, have done the same job.

The letters at the end of the transistor type number, for small signal devices, usually denote the

Manufacturer	Metal can	Plastic DIL			Ceramic DIL			Power plastic	
	TO99 TO100 8 pin 10pin	8 pin	14 pin	16 pin	8 pin	14 pin	16 pin	TO92	TO220
Advanced Micro Devices		P	P	P	D	D	D		
Analog Devices	J								
Fairchild	H	T	P	P	R	D	D	W	U
Intersil	K								
ITT		N	N	N	D.J	D.J	D.J		
Harris (H, HA, HI)	2*	3*	3*	3*	$1 *$	1*	$1 *$		
Motorola	H, C	P	P	P	V	L	L	P	T
National Semiconductor	H,C	N	N	N	J	J	J	Z	T
Precision Monolithics	J	P	P	P	Z	Y	Q		
Raytheon	H	DN	DB	MP	DE	DC	DD	S	U
Signetics	H	N, V, N, E	F,A,N,H	B, NJ	FE	FH	FJ		
Siliconix	A	J	J	J	K	K	K		
Sprague	H	M	A	A	H	H	H	Y	Z
R.C.A	T								2
Texas Instruments	H	P	N	N	JG	J	J	LP	KC
	mainly linear ICs	mainly commercial or industrial types			mainly military or industrial types			transistor types	

Table 3 IC package description. One or more letters will usualiy be placed immediately after the temperature code letter, except in the case of Harris ICs where numbers are used (marked with an asterisk) and placed before the type number.
current gain range or the pin configuration.
In digital ICs, the device classification, if it isn't bog-standard TTL or CMOS, is tucked into the middle of the part number. The LS in 74 LS6 8 indicates a low power Schottky device, for example, while the HC in 74 HC160 stands for high speed CMOS.

As a general rule, plastic encapsulations are cheaper than metal can or ceramic dual-in-line pac-

Family type	Description	Propagation delay (per gate)	Average Power (per gate)
74 ALS..	Advanced		
74 LS..	Low-power		
	Schottky	3-4ns	1-2 mW
	Schottky	10ns	2 mW
74	Standard TTL	10 ns	10 mW
74 S	Schottky TTL	3 ns	20 mW
74 L	Low-power TTL	33 ns	1 mW
74 C or CD	CMOS	50 ns	$<1 \mu \mathrm{~W}$

Table 4 The letter codes used in the middle of $\mathbf{7 4 0 0}$ series TTL type numbers to indicate the technology used.
kages, and commercial temperature range devices are cheaper than the industrial or military versions of the same. Although I have my favourite brands (often those manufacturers whose data books are more solidly represented on my office book shelves or whose distributors I happen to have a trade account with), my experience is that most modern devices from Western Europe, Japan or the United States (and this must include such 'off-shore' factory sites as Taiwan or San Salvador) are reliable in performance and packaging - the companies in question would have gone bust in this competitive age if this were not the case.

Finally, while there are very few magic differences between one device and another for a given voltage, power and current range - an NPN small signal transistor tends to be much about the same as another NPN small-signal transistor - nevertheless it is fairer to the designer if you try to use the particular device specified - there may be good reasons for the choice. For my part, as a designer, I will try to identify in future designs which are the critical devices and which ones could, in all probability, be substituted without any great effect on performance.
First letter

$A=$ germanium
$B=$
silicon
$C=$
gallium
arsenide

Second letter	
$A=$ small signal diode	
$B=$ varicap or rectifier diode $C=$ small signal transistor	
$\mathrm{D}=$ power transistor	
$\mathrm{E}=$ point contact diode	
$\mathrm{R}=$ special purpose device	
S = switching diode or transistor	
$\mathrm{T}=$ thyristor or triac	
$\mathrm{U}=$ high voltage transistor	
$X=$ same as B	
$Y=$ power rectifier	
$\mathrm{Z}=$ zener diode	

Third letter (if any)

 not usuallysignificant manufacturers catalogue number

Final letters
lead-out arrangement:(Pin view)

current gain at 1 mA :-
$A=40-120$
$B=150-460$
$C=270-800$

Table 5 The European Pro Electron classification system used to identify discrete semiconductors.

ETI "Sorcerer" String Synthesiser

Those readers who say we publish too few music projects should get knotted, or better still, get tied up in the construction of this excellent design. The Sorcerer features full chorus, tremolo and various depth stop settings and can be built either with a low-cost touch keyboard or interfaced to a standard keyboard for stage use. The basic unit covers two octaves but this can easily be increased by adding extra modules. Build the Sorcerer and unravel your creativity.

EX42 Interface For The BBC

In October 1983 we described an interface to allow the relatively cheap Silver Reed EX42 daisy-wheel typewriter to be used as a computer printer. The original design was intended for use with the Microtan 65, and we were promptly inundated with requests for a modified version for use with other computers. In an attempt to pacify at least some of our readers, we will be describing the most frequently requested version, an interface to allow the EX42 to be used with the BBC micro.

Data Encryption Using The Intel 8294

The ability to transfer computer data over telephone lines has revolutionised the way in which governments, companies and even individuals handle information. But with increased mobility of data has come a new problem - the vulnerability of the system to'hackers'. Anyone with a telephone, a computer and a modem can break into the system if they can only find the correct passwords, and once inside they can examine or modify personal records, industrial secrets or even, perhaps, highly sensitive military information. We will be taking a look at the problems involved in protecting data from hackers and at the Intel 8249, an IC which offers protection in accordance with the US Data Encryption Standard.

A Fresh Look At RCL Bridges

RCL bridges might seem a little old hat in these days of autoranging digital capacitance meters, precision resistance ranges on DMMs and the rest, but for sheer versatility they are hard to beat. In this informative article, L. Boullart describes the theory and operation of RCL bridges before going on to present a practical design which should cope with just about every resistor, capacitor and inductor you are ever likely to meet.

ROM Board For The Spectrum

A useful facility on some microcomputers is the provision of 'sideways' ROM sockets, allowing the existing ROM to be exchanged at will for an alternative operating system, language or whatever. This board allows such a facility to be added to the ZX Spectrum and can accommodate the popular 2716 and 27256 EPROMs as well as all the sizes in between.

A-D And D-A Conversion

We have published numerous designs for various converters, from single channel to sixteen channel and for use with a wide range of micro-computers, but we have never taken a detailed look at the process involved. This article looks at the operation of both A-D and D-A converters, explaining the different techniques used and discussing the advantages and disadvantages of each type.

The Real Components

John Linsley Hood continues his look at the ins and outs of components with an examination of the not-sohumble operational amplifier.

Plus...

Tech Tips, News Digest, Open Channel, Read/Write, Scratch Pad, Trains Ofthought and book and equipment reviews. It's all in next month's ETI.

THE AUGUST ISSUE WILL BE ON SALE FROM JULY 5TH. ORDER YOURS NOW AND MAKE YOUR SUMMER HOLIDAY COMPLETE!

PRINTER BUFFER

Abstract

Have you ever waited twenty minutes for your computer to print the program listing for your latest hyper-space megaadventure game? This project won't make the printer run any faster, but it will stop the computer being tied up for the whole time and let you get on with your programming. Design by Nick Sawyer.

The printer buffer is designed to appear to the computer as an ultra high speed printer, with up to 48 K of memory and capable of accepting data at a rate of several kilobytes per second. This data is then passed on to the printer at the much slower rate required, about several tens of bytes per second. As the unit appears to the micro as a printer with a standard Centronics interface, it is not specific to any one type of computer, and can be used with any system having a Centronics - type facility.

The buffer has been designed to be flexible in the amount of memory that can be fitted. It can contain either 16,32 or 48 K of memory, so you can start with 16 K and upgrade at any stage simply by plugging in more dynamic RAM chips. The software contained in a pre-programmed 2176 EPROM looks after the complicated aspects, and if you
feel that you need more than 48 K of memory then merely put two or more complete units in series. Remember though, that 48 K is about 15 A4 pages of BASIC listing, which should be more than enough for home use.

The buffer features a comprehensive push-button initiated self and RAM test, with printed results. An abort buton is also provided for completely re-setting the buffer and its memory.

What is a Centronics - type interface? It is basically a method for transferring data in seven or eight bit wide chunks from one device to another, and includes a 'handshake' mechanism to control the speed of transfer. The sequence of events is shown in Fig. 1.

Vallid data is set up on the parallel data lines and the STROBE line is then pulled low by the transmitting device (computer). The receiving device

(printer) responds by pulling the BUSY line high for as long as is necessary to process the data received. The BUSY line is then pulled back low and a short 'active low' pulse is output on the ACK line to indicate that the transfer is complete and the next. data byte may be transmitted. The busy period may be anything up to one second during carriage return on a slow printer, and the transmitting computer is normally idle during this time.

Construction

The printer buffer is built on a double sided board without plated through holes for reasons of cost. This means that where tracks are joined to components on both sides of the PC.B, they will need to be soldered to the component on each side of the board. This presents no problem so long as it is remembered to leave components, IC sockets in particular, standing slightly proud so as to allow access for a thintipped soldering iron. In addition there are several connections which will need to be made through the board using either pins or bits of wire, again soldered on each side.

Sockets should be used for the microprocessor IC1, the EPROM IC5, and the six dynamic RAM chips IC9-14. All remaining ICs and the other components may be soldered straight in, taking care not to overheat them.

Fig. 2 The circuit diagram of the printer buffer.

PARTS LIST

RESISTORS ($1 / 4 \mathrm{~W}, 5 \%$ unless otherwise stated)		Q1	BC557	
		D1	1 N4148	
R1	4k7	D2, 3	1N4001	
R2,3,9,10,12,13	1k0	LED1, 2	0.2" Red LED with	
R4	47k		panel-mounting	
R5	22 R 12 W		holder	
R6, 7	470 R			
R8, 11	10k	miscellaneous		
RP1	$1 \mathrm{kO} \times 8$ SIL resistor pack	SK1	36 way right angle Centronics-type PCB mounting	
CAPACITORSC1, 10			socket	
		$\begin{aligned} & \text { SK2 } \\ & \text { SW1,2 } \end{aligned}$	26 way IDC plug momentary action push-to-make	
C2	10n ceramic			
C3-9	100n ceramic			
C11	$2200 \mathrm{u}, 16 \mathrm{~V}$		switches, panel mounting	
		T1	6-0-6V, 6 VA chassis	
SEMICONDUCTORS			mounting	
IC1	Z80		transformer 2 MHz crystal	
IC2	7415368	XTAL1		
IC3	74LS74			
IC4	741502			
IC5	2716			
IC6	7415139	PCB; 26 way ribbon cable; DIL IC sockets, 6 off 18 pin, 1 off 24 pin and 1 off 40 pin; plastic case $250 \times 140 \times 75 \mathrm{~mm}$; nuts bolts, wire etc.		
IC7, 8	74 LS157			
IC9-14	TMS4416			
IC15, 16	74 LS374			
IC17	7805			

BUYLINES

All of the semiconductors and the other

 general components are widely available from companies advertising in these pages. The box in which the prototype is housed is a Verocase, number 202-21035, and is available from Electrovalue, Maplin and TK Electronics among others. The rightangle 36 way Centronics connector is an RS Components part, catalogue number 470-639. RS will only handle orders from trade and professional customers, but if you are unable to use them because of this you can obtain the part through Crewe Allan \& Co of 51 Scrutton Street, London EC2 on payment of a small handling charge. A preprogrammed EPROM is available from Tronik Designs, 68A Broomfield Avenue, Palmers Green, London N13 4 JP , and costs $£ 7.85$ inclusive. Please allow 10 days for delivery. A doublesided PCB is available from the same address for $£ 10.75$ and 28 days should be allowed for delivery. Please note that the PCB will not be available through our own PCB Service.At the heart of the circuit is a $\mathbf{Z B O}$ microprocessor (${ }^{(C 1)}$ running at 2 MHz . The single phase 2 MHz clock is provided by a simple crystal controlled oscillator using three LSTTL inverters (part of IC2), and a pull up transistor to provide the nonstandard clock levels required by the z80. Power-on reset for the microprocessor is provided via an RC network with a time constant of around 200 ms . The diode D1 is provided to ensure a reset occurs should the power supply fail momentarily.

The two function switches, test and abort are connected to the two activelow interrupt inputs of the ZBO, INT and NMI respectively. The inputs are normally connected to 5 volts via a resistor and are grounded if a switch is pressed, causing an interrupt which is processed by the software. The software itself is carried in a 2716 EPROM (IC5) which is a 2 Kx 8 device requiring eleven address lines. An active-low decode from the address decoder is connected to the chip select line of the 2716 , and this is used in conjunction with the RD line to gate data from the EPROM onto the data bus for addresses 0000 to 0 FFF Hex. In fact only addresses up to 07 FFh are used as the se are sufficient to decode 2KBytes.

Address decoding is performed by two halves of a 74LS139 dual two to four line decoder, IC6a\&b. IC6a decodes address lines A14 and A15 to give four segments of 16 K each. The lowest of these segments is further decoded using address lines A12 and A13 to give four segments of 4 K each. This therefore gives the addressing capability shown in the memory map.

The possible 48 K of RAM is made up from six TMS4416 dynamic RAM IC's, each of which is organised as 16 Kx 4 bits. This means that two devices are needed to make each 16 K segment. In common with most types of dynamic RAM, the required fourteen address bits have to be multiplexed onto eight lines. This is done to keep the package size down. Eight address bits are strobed into the IC's by a falling edge on RAS (Row Address Strobe), and the remaining six bits are strobed in by a falling edge on CAS (Column Address Strobe).

These strobe signals are generated by a combination of the signals MREQ, RFSH, and the 2 MHz clock signal. The signal MREQ is connected directly to the RAS lines of all the RAM chips, so that an address is strobed in each time MREQ goes low. This will occur on two occasions, when the micro is requesting data from memory and when an automatic refresh cycle is being performed by the $\mathbf{Z 8 0}$. These refresh cycles are

necessary for proper operation of the dynamic RAMs. When the micro is requesting data from the memory, the RFSH line will be high and a delayed version of MREQ will be clocked into the flip-flop IC3a by the clock signal. The \mathbf{Q} output of the flip-flop is used to switch the two adress multiplexer chips, IC7\&8, and also to enable the address decoder IC6a. The NOR gates, IC4, are presentto provide some delay for this signal and also ensure that it goes back high at the same time as the MREQ. The signal used for CAS is the appropriate output of the address decoder and this will latch the second half of the device address into the DRAMs. In case of a refresh cycle, the signal RFSH will go low and prevent the signal MREQ being clocked into IC3a, so preventing the above procedure but ensuring that the refresh requirement of the dynamic RAMs is met.

The pins G and W on the RAMs are connected to RD and WR respectively and these control the direction of information for both read and write cycles. The data pins are connected directly to the data bus of the $\mathbf{Z 8 0}$ as no buffering is needed.

The two 74LS374s hold the information for transfer to and from the outside world. Data is presented from the computer at the D inputs of IC15. When the STB line from the computer goes low it causes the \mathbf{Q} output of the flip-flop IC3b to go high. This is connected to the clock line of IC15 and so data is strobed into its latches. The Q bar output of IC3b is also fed back to the $\mathbf{Z B O}$ via a tri-state buffer IC2d, and this informs the sottware that data has been received. This line is also fed back to the transmitting computer via an inverter IC2e thus serving as the BUSY line. The state of this line is shown by LED1, which will illuminate when the line is low to indicate buffer ready.

When the $\mathbf{Z 8 0}$ reads the latches in

IC15, the read strobe generated is also used to clear IC3b thus removing the BUSY signal, and is also fed back to the transmitting computer to serve as the ACK signal. The above procedure is repeated until the transmitting computer has no more data or the buffer runs out of space, in which case the buffer will keep the computer waiting until space becomes available as data is output to the printer.

Data to be output to the printer is written by the $\mathbf{Z 8 0}$ into the octal latch IC16, the outputs of this latch being fed to the data inputs of the printer. The $\mathbf{Z 8 0}$ monitors the BUSY line of the printer by enabling, with IORQ, the tri-state buffer IC2f, and when it discovers that the printer is no longer busy the STB line is pulled low for a few microseconds. This strobes data into the printer which will then go BUSY again. This sequence is repeated until the buffer has been emptied. It should be mentioned that the input and output processes take place simultaneously, the software being in control at all times. The state of the printer busy line is also shown by LED2, which will illuminate when the printer BUSY line is low to show that the printer is ready.

The power supply is quite straightforward, consisting of a centre-tapped transformer whose output is rectified and smoothed by D2 \& 3 and C11. The resulting $D C$ is fed to the voltage regulator IC17, which maintains a constant output of 5 volts. Capacitor C10 is provided for further smoothing, and capacitors 3 to 9 are for de-coupling.

Testing, Connection and use of the printer buffer will be described in a concluding article which we hope to publish next month, along with a complete listing for those diehards who prefer to program their own EPROMs!

ETI

NOISE GATE

There are those who say they can't tell the difference between the music and the noise these days, but Ian Coughlan's versatile unit is not so easily fooled. And when it's not opening up the way to noise-free music, you can use it as an envelope shaper.

Every musician knows the problems caused by noisy leads and effect-units: whenever you stop playing, the snaps, crackles and pops are still there. This state of affairs is acceptable when practising, but is a major headache when recording or playing live. One solution is a noise-gate, the electronic equivalent of pulling the jack-plugs out every time you stop playing. Needless to say, the noise-gate does it so unobtrusively that you'd never know it was there, which is the whole idea!

Important parameters of a good noise-gate are: Threshold: this is the input signal level required to open the gate, and is adjustable from $-35 d \mathrm{Bm}$ down to -65 dBm approximately. Normally it will be set just above the noise-floor, so that when playing begins, the increase in signallevel is sufficient to open the gate. Response time: this is the time taken for the noise-gate to begin opening once the threshold has been crossed (some manufacturers of noise-gates call this the attack-time, which is not strictly correct. Ideally it should be instantaneous, and in practice should be
less than a millisecond and not adjustable.
Attack-time: this is the time the gate takes to go from fully closed to fully open. Most noise-gates open instantly, which is what is usually required. This design will do so if you want it to, but can also be adjusted to take up to 100 ms to open.
Hold-time: this is the period for which the noise-gate remains fully open after playing has stopped. It is adjustable between 100 ms and 2 s .
Decay-time; this is the time taken for the noise gate to close after the Hold-time has elapsed. This is really what sets this design apart from others: it will reach the fully closed state within 100 ms if you want, but it can also be set to take as long as two seconds, causing any noise to go away unobtrusively rather than abruptly.

As well as being triggered by the incoming signal, the noise-gate may also be opened by another signal connected to the EXT. KEY socket, by a logic level on the REM socket, by a switch contact (also on the REM socket), or by the built-in footswitch. Whichever

Fig. 1 The response envelope produced by the noise gate.

triggering method is used, the attack, hold, and decay controls still function. Because the envelope shape is completely adjustable and the unit can be controlled by a variety of inputs, it can be used as an envelope shaper in its own right.

Construction

Before soldering anything into place, check that your PCB has a hole under PR1 and, if not, carefully drill a $1 / 4^{\prime \prime}$ hole there. This will allow the preset to be adjusted from the underside of the board when the unit is assembled into its case. When the bare board is ready, commence assembly by installing the wire link, the four

[^0]

HOW IT WORKS

of IC3d will produce positive going pulses on pin 4 of the Schmitt.

As long as these pulses are present, diodes D6 and D7 will conduct and hold the two ends of C16 at the same potential, preventing it from charging. IC5b and IC5d both have one input connected to the positive supply and will thus act as Schmitt inverters. Pin 1 of IC5b will be held high via R30 causing its output to stay low, and this low appearing on pin 12 of IC5d will force pin 11 high.

When the pulses at the output of IC5a cease, D6 and D7 will no longer conduct and C16 will begin to charge via D8 from the logic high on IC5d's output. The rate of charging will be determined by the setting of RV4. As the voltage across the capacitor rises, the voltage across R29 and RV4 will fall and pin 1 of 1 C 5 b will be pulled low via R30. At a point determined by the operation of the Schmitt, IC5b will change state, its output going high and switching IC5d whose output will go low. Since it was the voltage from this gate which charged the capacitor, no further charging can now take place and the circuit will remain in this state until a further train of pulses is received from IC3d and IC5a.

If bypass mode is selected either by operation of SW1 or by means of a
logic signal into SK5, IC5a pin 5 will be held low via the Schmitt inverter IC5c. This will cause 1C5a pin 4 to remain high, whereupon D6 and D7 will conduct, IC5b pin 1 will be held high via R30 causing pin 3 to go low, and the resulting low on pin 12 of IC5d will cause pin 11 to remain high. This pin will then stay high for as long as the unit is in the bypass mode.

This high level dirives the GATE OPEN LED via Q3 and R31, R32 and also provides a voltage into pin 12 of IC3C. This voltage is held down to 4.3 V by ZD2 and R14. IC3c is a unity gain buffer stage which, on receiving an input volage, charges C8 via R13 and RV2. The time taken to charge CB is the attack time and is adjusted by RV2. The voltage on this capacitor is buffered in turn by IC3d and used to crive Q2 which then charges $C 7$. The voltage across this capacitor corresponds to the decay portion of the envelope shape and the discharge period is adjusted by RV1. IC3a is another unity gain buffer which couples the composite envelope shape voltage to the gain-determining pin of the transconductance amplifier, IC2. PR1 allows the overall gain of the audio path to be adjusted back to unity.

The complete circuit operates as tollows. When the input signal exceeds
the threshold, pulses will be produced at pin 1 of IC3d in the manner previously described. Just one of these pulses is sufficient to send IC5d pin 11 high with no apparent delay and this in turn produces 4.3 V at pirn 14 of IC3c. IC3b pin 8 will also rise to 4.3 V but will do so exponetially because of the action of C8, R13 and RV.2. C7 is much larger than C8 but it will charge at the same rate because it is fed from the low resistance source provided by the emitter follower Q2. As the voltage on this capacitor rises, so will the current flowing into pin 5 of IC2 and so the gain will increase.

When the input signal falls below the threshold, the pulses on 1C3d pin will cease and pin 11 of IC5d will go low after a period of time determined by the setting of RV4. The output of IC3c will then also go low and C8 will discharge through R13 and D1. C7 will also discharge but at a rate determined by the setting of RV1. This falling voltage will reduce the current flowing into pin 5 of IC2 and hence the gain of the audio path will fall.

Most of the circuit operates directly from the 0 V and +9 V supply, but some parts of it require a ceritre tap to provide something approaching dual-rail operation. This intermediate voltage is provided by ZD1 and Q1.

Fig. 3 The component overlay for the noise gate PCB. Note the use of insulated wire links across the board and that the capacitors at the socket end are laid flat to prevent their interfering with the potentiometers when the case is assembled.

PARTS LIST

RESISTORS (all $1 / 4 W, 5 \%$ unless otherwise stated)		SEMICONDUCTORS	
		IC1	TL072
R1	6k8	IC2	LM3080
R2	470k	IC3	LM324
R3, 7, 30, 33	10k	IC4	TL062
R4	39k	IC5	4093
R5, 6, 9	510R	Q1-3	ZTX300
R8, 11, 29, 34	100k	D1-11	1N4148
R10	910R	ZD1, 2	BZY88C 4V3
R12	1 kO	LED1	miniature red LED
R13, 14	22k		with mounting
R15	12k		bezel
R16, 19	1M0		
R17, 24, 27	220k 2\%	MISCELLANEOUS	
R18	3k3 2\%	SK1	3.5 mm miniature jack socket, PC
R20	330k		
R21 R22,	18k		mounting, with
R22, $\mathbf{R 2 8}$	200k 2\%		$1 / 4^{\prime \prime}$ stereo jack
R31	47k	SK2	
R32	3k9		socket, PC mount-
RV1, 2, 4	2 M 2 logarithmic	SK3	ing, with switch 1/4" mono jack
RV3	470k logarithmic 10k horizont		$\begin{array}{lr} 1 / 4^{\prime \prime} \text { mono jack } \\ \text { socket, } & \text { PC } \end{array}$
1	skeleton preset		3.5 mm miniature
CAPACITOR S C1, 3	100u 16V radial	SK4	jack socket, panel mounting, with
	electrolytic		switch
C2, 5, 6, 11, 13	10u 16V radial	SK5	1/4" mono jack
	electrolytic		socket, PC mount-
C4	1 u 0 16V radial		ing, with switch
	electrolytic	SW1	SPDT alternate
C7, 16	$1 u 035 V$ tantalum bead		action push switch, panel mounting
C8	47n multi-layer	PCB;	4 off; battery con-
C9	680p polystyrene	nector;	high mounting
C10, 12	100n multi-layer	pillars,	rews or bolts to suit;
C14	15p polystyrene	14-pin	kets, 2 off; thin foam
C15	$220 n$ multi-layer	rubber;	PP3 or similar.

BUYLINES

The $1 /{ }^{\prime \prime}$ " jack sockets used in the prototype are made by Cliff and are totype are made by Cliff and are
designed for PCB mounting. They are designed for PCB mounting. They are
not readily available in small quantities not readily available in small quantities
but their pin spacing is the same as but their pin spacing is the same as that of Cliff's panel mounting $14^{\prime \prime}$ jack sockets which are available from Electrovalue. The panel mounting type have solder tags with eyelets rather than pins, but it is a simple matter to cut away one side of the eyelet so as to leave a pin narrow enough to suit the holes in the PCB. Other makes of jack socket available from other suppliers may also be suitable if so modified but we have not tried this.
The potentiometers used are also supplied by Electrovalue and are from their P20 range. RS components stock a suitable switch (catalogue number 339-241) and a 15 mm button for it (catalogue number 339-279 for a pack of three) but they do not stock a shroud as used on the prototype. A switch with a shroud is available from Electromatch for $\mathbf{E 4 . 1 5}$ including post and packing. The part numbers are MPA106D for the switch, C23 for the button and G13 for the shroud and you can contact them on 0403-814111 to obtain up-to-date ordering information. The box is made by STC and is type number 73399 B . it costs EA .97 packing from STC Electronic Services Itd Edinburgh Way, Harlow, Essex CM20 2DF. All of the other compoCM20 2 DF . All of the other compo
nents are available from our regular nents are available from our regular
advertisers and the PCB is available from our PC8 Service.

Fig. 4 Drilling details for the case, shown here actual size.
jack sockets and, if desired, sockets for ICs 3 and 5. The jack sockets must be of the recommended type if they are to fit correctly into the prepared holes on the PCB.

Continue assembly by soldering into place the resistors and capacitors, making sure that all the capacitors near the connector end of the board are mcunted flat so as to make room for the potentiometers when the board is installed in its case. Next fit the diodes, transistors and ICs 1, 2 and 4 which must be soldered directly to the board or they, too, will not clear the potentiometers. ICs 3 and 5 are well clear of the potentiometer positions and will not cause problems if fitted using sockets. Cut to length four pieces of ordinary insulated connecting wire and solder them between the points shown on the PCB overlay, then fit the two battery guide pillars and the PCB is complete.

The next job is to prepare the box. It is best to use the recommended box if you want a particularly compact unit, but if you cannot obtain it then use a slightly larger box so as to avoid problems with the potentiometer mounting.

Drill all the holes as accurately as you can, clean the box thoroughly with steel wool soap pads to remove any traces of grease or dirt, then paint it. When the paint is dry, the legends can be applied using rub-down lettering and a coat of clear varnish sprayed on to protect them. A piece of thin foam rubber should be glued to the inside of the box to prevent the battery from rattling around.

It is important to use the recommended potentiometers, switch and EXT. KEY socket or difficulty may be encountered in getting everything to fit within the space available. Mount the LED, the socket and the potentiometers through their respective holes in the front panel and connect them up to the PCB, taking care not to use greater lengths of wiring than is necessary. Solder the battery connector leads to the board and place one fibre washer on each of the three larger jack sockets. Mount the switch through its hole in the front panel but do not tighten it up.

Offer the PCB up to the case, guiding the jack sockets into their holes and aligning the switch pins with the pads provided. A little bit
of force may be necessary, but any serious opposition should be investigated lest anything be damaged. When the PCB has settled into place, solder the switch pins onto their pads, tighten the switch mounting from the front panel and secure the large jack sockets with the nuts provided. Construction is then complete.

Setting Up And Use

Connect up a 9 V battery, switch on, and apply a signal of about 2 V peak-to-peak to the input. The LED should light up. Monitor the output with an oscilloscope or an AC millivoltmeter and adjust PR1 until the output level is of the same arnplitude as the input level. This is the only adjustment necessary and if all is well the base can be screwed into place and the unit is ready for use.

In use, the noise-gate should come between any effects and the amplifier or tape-recorder. Connection should be by a screened cable as short as is practical. The unit is switched on by connecting a (mono) jack to the input socket.

When setting the noise-gate up initially, turn the sensitivity control

Fig. 5 Connecting details for the front panel components.
fully clockwise and the attack, hold and decay fully anticlockwise. The LED should be off: if it isn't, press the footswitch. If using any effects, switch them on to produce all the noises you're trying to get rid of, and rotate the threshold control anticlockwise (thus lowering the threshold) until the LED lights (at this stage you should be
able to hear the noise getting through to your amplifier). Turn the threshold control slightly clockwise, raising the threshold just above the noise-floor. The LED should go off, and the noise should stop.

As you play your instrument, the gate should open, and should close when you stop. Remember
that the other controls are still at a minimum, and should now be set to suit. Normally the attack will be left at a minimum, giving a short rise-time, with the hold and decay at about a second or so.

Pressing the footswitch will open the noise-gate regardless of input level, and is very useful when tuning-up. A remote footswitch can be connected to the REM socket, disconnecting the unit's own switch.

The noise-gate can also be used as an envelope shaper with the attack-hold-decay cycle being triggered in a number of ways. An audio signal can be connected via the EXT. KEY socket and will trigger the envelope shaper but still allow the threshold control to be used. Alternatively, the EXT. KEY should be shorted with a miniature jack plug and the unit triggered from the REM socket either by making and breaking a mechanical contact or by applying a logic signal. Closing the REM contacts or applying a $0 \vee$ level will close the gate while opening the contacts or applying a +5 to +15 V signal will open it.

ETI

ELECTRON

SECOND

PROCESSOR

It doesn't take ESP to know that we're dealing with the software for John Wike's Electron add-on.

Having described the hardware for this project last month, it is now time to consider the software. When RUN the program creates a 2 K machine code file on tape or disc called E2PCODE. This latter is what must be *RUN to operate the second processor. Alternatively, if you have a disc it can be renamed as !BOOT and run using shift-break.

The listing given in this article has been produced using a formatting program to line it up nicely. If you intend to enter it yourself you must leave out all the spaces (except those after the ': labels) or it will not fit into memory.

The beauty of the Acorn machines is that in order to intercept the input/output operations of any language it is only necessary to modify eleven well-documented operating systems (OS) routines. Detailed descriptions of these can be found in 'The Acorn Electron Advanced User Guide' by Holmes and Dickens, and 'The Advanced User Guide for the BBC Micro' by Bray, Dickens, Holmes. The operating system calls are the same for both machines and while one book also covers the special hardware in the Electron, the other is more readily available in the shops.

Memory Usage

In this article the Electron processor will be referred to as the I/O processor because that is its main function in the new environment. The second processor will be called 2P for short.

The E2PCODE program loads into addresses 2800 h to 2 FFF h in the I/O memory, as shown in the memory map. This is below the
highest resolution screen. It uses memory (again I/O) at 0 to 70 h and 400 h to 40 Bh so it is important that no user programs corrupt these three areas of $1 / \mathrm{O}$ memory.

The main program is in three sections. Lines 190 to 4880 run where they are in I/O memory. Lines 5930 to 7250 are copies to the 256 byte sideways ROM area and exist at 8000 h in I/O memory and FFOO h in 2P memory. Finally, lines 7300 to 11100 are passed to 2 P memory at F 800 h to FAFF h .

Communication

The prozessors communicate with each other by way of various locations in 2P RAM which are used as status and data registers. Their functions are listed in Table 1 and, together with the 28 byte Oswrch buffer, they overwrite the 2 P reset routine in lines 6020 to 6230. As there is no hard reset that routine is not needed again anyway. With all the registers, except the buffer pointers, a zero value indicates that the message
data has been received and acted on.

Facilities

This implementation has the ability to reset into the $1 / C$ processor by pressing B-break, ie. hold down the B key while pressing BREAK. Programs can then be developed in the I/O memory without switching off. In I/O HIMEM is set to $2800^{\circ} \mathrm{h}$ to protect the program. In 2 P HIMEM is 8000 h and PAGE is 800 h .

If you execute *HELP while in $2 P$ you will get the message "E2P $0.1^{\prime \prime}$. This does not appear if you are in the $1 / \mathrm{O}$.

Just one word of warning. Do not use any EVENT handlers in $2 P$ that call OS routines. If you do the system will most probably hang up.

You will have to find out by trial and error which programs will work with a second processor. Anything that accesses screen memory or hardware directly will not work, since this can only be done by OS commands across the interface.

Address 1/O(2P)	Function	Possible Values
800 D (FFOD) h	Pass Instruction to 2P	8 h Start memory read (0)
		9 h Start memory write(1)
		Ch Run program(4)
		28 h Stop memory read/write
		40 h Handle Event code 80 h Pass BRK error message
		Coh Set/Reset Escape flag
		FF h Initialise 2P (Reset)
8013(FF13) h	Pass OS call to $1 / \mathrm{O}$	Address of I/O OS routine
8019(FF19) h	Status for 1/O to 2P data at 801A(FF1A) h	40 h Data is text
		80 h Data is not text
		CO h End of data
8018 (FF1 B) h	Status for 2P to I/O	As for 8019(FF19) h
	data at 801 C (FF1C) h Oswrch buffer insert pointer	Pointers equal if buffer empty
801 D(FF1D) h	Oswrch buffer remove pointer	"Pointers equal if bufter empty
8014(FF14) h	Flush Oswrch buffer flag	Equal to 801E(FFFE) h

Table 1. Communication protocols.

HOW IT WORKS

I/O OPERATION

When the program is run the I/O processor enters the cold start routine at line 1250. At lines 1350 to 1630 it checks each ROM number from 7 down to 0 for a block of RAM of 256 bytes or less. If it finds one it assumes that it is the E2P card and stores the ROM number in location 'this ROM', if not it returns to the language ROM and prints the error query, ??.

If the ROM is not logged in already (1640-1670), it then cycles through the RAM (1690-1720), loads the RAM (1740-1770) and clears the 2 P reset (1780). The RAM is then cycled to refresh it (1800-1820) until the 2P signals that it is ready $(1830-1840)$. It then initiates a 2 P memory write and transfers the $2 P$ operating system routines over (1860-2040) before soft resetting itself (2050).

During $1 / O$ reset the operating system calls the sideways ROM service routines at 8003 h (line 5940) with the Tube reset code $F E \mathrm{~h}$ in the accumulator. This is detected at line 2350 and the Osbyte vector is changed (2480-2570) to allow the new routine (3000-3140) to set HIMEM and inhibit the memory clear facility. Lines 25902670 check for the B key(64 h in line 2630). If it is not pressed the Tube presence at Osbyte EA h and the $1 / O /$ second processor flag at isec are set. The $2 P$ is initialised ($2700-2740$). The vectors are changed, the soft character set is exploded, the filing system status is set and the sign on message is printed (2670-2920) before leaving the service routine.
Before the $1 / O$ can communicate
with the 2P it must select the correct sideways ROM location. This is done with the routine at 3230-3320.

If the Tube presence flag is set during $1 / O$ reset the operating system will not start up a language but will jump instead to location 400 h . This has been loaded at line 2690 (via lines 380 430) with the code in lines $\mathbf{2 1 0} \mathbf{- 2 4 0}$. So it will enter the warm start routines at line 4120. Pointers are set up to transfer the current language to 2 P memory either at $8000 \mathrm{~h}(4130-4180)$ or at a specified relocation address ($4190-4300$). If the language has been selected by a * command (4320), of if this is a cold start (4330-4340), or if it is a hard reset (4350-4370), and it is not Plus One control ROM at 0 Cn ($4380-4410$), then the language will be transferred to $2 P$ memory ($4430-4550$). The language will then be started up in 2P by issuing a Run Program command (4590-4680).

The actual routines to give instructions to 2P start at line 3340. The operating system will enter thse via the relocated line 230 at 406h, but they are called directly within this program. Lines 3340-3500 allow different filing systems to claim the $2 P$ interface by entering with their file number plus COh in the accumulator and waiting for the carry flag to be set. They release the interface using 80h plus the file number. The read, write and run instructions (0,1 and 4 respectively) enter with YX pointing to two consecutive locations which hold the action address for the $2 P$. This address is sent in lines 3550-3660 then the actual instruction number ORed with 8 so that

Memory maps of Electron and second processor board.
it cannot be zero is sent ($3690-3710$). If the instruction is to run a program, the I/O processor will enter its main loop, otherwise it will return (37403820).

The main loop routine (5540-5880) maintains the rotating Oswrch buffer remove pointer at $801 \mathrm{D}(\mathrm{FF} 1 \mathrm{D}) \mathrm{h}$. If the buffer is not empty its contents are printed. If it is empty the status register at 8013(FF13) h is examined and an OS call is executed if desired.

2P OPERATION

When the $2 P$ reset is cleared it jumps via its reset vector at FFFC h (7240) to line 6020. Here it loads a 128 byte RAM refresh routine twice into FBOOh to FBFFh. This consists of 'compare accumulator immediate' instructions (C9h), which are two bytes long and take two cycles to execute. Thus it will access 128 bytes in 128 cycles, or 64 microseconds. The last few bytes of the routine contain lines 6170-6230 which modify the calling routine to scan the other 128 bytes next time round $(6170-6190)$ and check the status register a 800D(FFOD) h to see if any instructions need to be executed.

Normally the NMI routine ($6400-6420$) will call the cycle routine ($6350-6380$) to periorm the refresh. However while the $1 / O$ is writing or reading 2 P memory via the data register at FCE5 (FEE5) h the 2 P must respond quickly to the IRQ line. So the NMI is disabled and the $2 P$ goes into the loop (6680-6700) where it is continually cycling to do the refresh. The read/ write function is performed by modifying the three locations at ivec (6270) in the irgl routine (6250-6330) to read or write the specified start address (6470-6550). If it is a read the first location is read by a software interrupt (6610-6620).
The other instructions are looked for in the test routines ($7460-8310$) and the appropriate action taken.
The 2P OS routines (8330-9720) interact with their 1/0 counterparts (450-1230) via the register at 8013(FF13)h. Some routines need to pass over the processor A, X and Y registers. Some need to pass text and some need block data. These are handled by the routines at lines 4700 5360, 6730-6780, and 9740-10320.
The Osword routines transfer different amounts of different size blocks. The tables at 10480-10910 are used to determine how much to send.
The 2P Osbyte routine checks for the memory functions 82 h to 84 h (8420-8540). these give the machine high order address (FFFF h for I/O, 0000 h (or 2P), PAGE, HIMEM, and HIMEM in other Modes, in that order. It also checks (8560-8640) whether the Oswrch buffer is being flushed (Osbyte DA $h, 0,0$) and sets the flag at 8014 (FF14) h.

S0 REM AS SPACE 15 SHORT WHEN60 REM USING DISCS，THE CODE IS				1210		JSR				TYA		3530 ．Instr 4		PHF＊					
				$\begin{aligned} & 1220 \\ & 1230 \end{aligned}$				2380											
70	REM	USING DISCS，THE CODE ${ }^{\text {a }}$				blkout 1	2390		PHA		3540	．Instr4	SEI ${ }_{\text {STY }}$						
	REM MEMORY before saving．			1240			：		2400		JSR	\＆FFET			$\begin{aligned} & 3550 \\ & 3560 \end{aligned}$				
90				1250	．est	SEI		24.10		LDA	＊\＆AE	STY	813 812						
100	modeg			1260		LDA	4840	2420		LDX	＊			STA					
110	VDU28，0，24，39， 12			1270			\＄000	2430		LDr	\＃\＆FF	3580		LDA					
				1280			\＃RAA	2440		JSR	2FFF4 4	3600		PHA					
130 ：	U\％$=\% 2800: v \%=46100$			1290 1300			\＃ 0	2450		STX	210			JSR pselect					
140				1300 1310			\＃\＆FF 3FFF4	2460		STY	$\times 1 \mathrm{E}$	36103620		Lidy \＃1					
150				1310 1320			\％fFF4	2470 2480		LDa		3630	．1nstr5	LDA STA	（\％12），y				
160 170				1330			\＆F7	2490		CMP	＊208OSb DIV 256	3640			48010， r				
180				1340		；		2500		beg	Rservs	3660		DEY					
190	［ OPT I	JMP cst		1350			${ }_{\text {afa }}$	2510		Sta	01dosb－1								
200	．cod400	：		1360		LDY	＂ 7	2520		lda	\＆20A	36703680							
210		JMP	wst	1370	．cst 1	TYA		2530		Sta	oldosb				213 816				
220		JMP	esc	1380			sidesst	2540		LDA	un wosb DIV 256	36903700		LIDA ORA	\％ 16				
230	．os jmp		instr	1390			48000	2550		Sta	8200								
240		JMP	osrdch	1400			48100 cst 5	2560		LDA	\＃newosb MOD 256	3710 3720	．instr 7	JSR peiomm					
250	．pload	LDA	（0），Y	1410 1420			ests	2570		STA	820 A	3730		JSR	sidesel				
260 270			${ }_{0}^{(0) .4}$	1420 1430		STA	\％8000	2580 2590	Rserv5			3740		LJa	416				
280		dne	ploadz	1440		CMP	28100	2600	Rservs	JSR	\＆FFF 4	3750		CIAP					
290		INC		1450		PHP		2610		Loy		3760		BNE	Inst				
300	．pload2	－		1460		EOR	＊\＆FF\％	2620		STY	1 sec	3770							
310		STA	\＆FCES	1470		STA	\＆8000	2630		CP\％	18.64	3780	．instra		${ }_{8}^{414}$				
320		＇		1480		PLP		2640		BNE	Rserv7	3790 3800			814				
350	．del dy	BNE	delay	1510	．ests	DEY		2670		JMF	Rservio	3820		f：TS					
360		RTS		1520		－BPL	cst 1	2680		JSR	codic	3830		${ }_{\text {B }}$					
370		－		1530		TXA	sldesel	2690	．Rserv7			3840	sc	$\mathrm{FPH}^{\text {He }}$					
380	$\begin{aligned} & . \operatorname{cod} 1 d \\ & . \operatorname{cod} d \mathrm{ds} \end{aligned}$	LDX	＊8C	1540		JSR		2700		LDA	\＃8FF	3850		SEl					
390 400		LDA		1550		${ }_{\text {BRK }}$		2710 2720		STA	$15 \times c$ HREA	3870		PDA					
410		DEX		1570		EQus	＂？${ }^{\text {P }}$	2730		STA	（8103， 4	3880		JSR	pselect				
420			codlds	1580		Equs		2740		JSR	pcomri	3890		LDA					
430		RTS		1590		BRK		2750		：		3900 3910		STA	と 8010				
440			8 FFCB	1600		ED	telear	2760		LDA	${ }_{4}^{4}$ neubrk MOD 256	3920		STA	\％16				
460	．owrden	JSR	regwor	1620	．estuec			2770		LDA	Uneubrk DIV 256	3930		bNE	inst				
470	．osret			1630	． ．st7	STY	this ROM	2790		STA	\＄203	3940							
480		STA	88013	1640		LDA	（4F6）， Y	2860		LDA	\＃newevent MOD 256	3950	nt	STA	819				
490	．anrt	RTS		1650		BEQ	est10	2910		STA	\＆ 220	3960							
500		：		1660		CMP	88006	2920		LDA	nnewevent DiV 256	3970		LDA	854				
510	．owa	JSR	datin	1670		BEO	cst 16	${ }_{29}^{2830}$		STA	4221	3990		JSR	pbeleet				
520 530			difFr ${ }_{\text {owret }}$	1680 1690	．est10	idx	\％	28 ± 0 2850		Lóa	\＃\％14	4000		STX	\＆800e				
540	．osbyte			1700	．cst11	LDA	\＄80000，x	2960		L－x	me	4010		STY	\％ 800 F				
550		JSR	regsin	1710		INX		2870		JSR	LFFF4	4020		LDA					
360			${ }_{\text {cFFF }} 4$	1720		BNE	cst11	2880		LDA	\％ 814	4030 4040		STA	\％8010				
580			regsout	1730 1740	．est 12	Lida		2890 2900		STA	814	4050							
590	．oswara	＇		1750		STA	$88000, x$	2910		LDX	＊message2－miessaget	4060							
600		LDA	${ }_{8} 8016$	1760		1 NX		2920		JSR	prnmes2	4070		JSR	sidesel				
610		BNE	osuds	1770		BNE	cst 12	2930		$\stackrel{1}{2}$		4080		LDA					
620		JST	datin	1780		LDA	\＆FCES	2940	．Rservio	pla		4090		PLP					
630		STX	0	1790		－		2950		TAY		4100		RTS					
640		STY	1	1800	．cst 15	LDA	88000，x	2960		LDA	${ }^{10}$	4110 4120							
650 650		TXA		1810		INX		2970	．Rservis	LDX	\＆F4	4120 4130		CLI					
660 670		TAY		1820		BNE	cst 15 88000	2980		RTS		4140							
670 680				1830 1840			eseod	2990 3000	．newosb		\＃864	4140 4130		STY	817				
690		JSR	osret	1850				3010	．newoso	BEa	newosb2	4160		LDA	＊8Bo				
700			anrts	1860	．cst 16	LDX	Mcstrec MOD 256	3020		CMP	${ }^{4} \mathrm{k}$ Es	4170 4180		STA					
710 720			txtout	1870			Westvec DIV 256	3030		ENE	nevosb5	4190							
730	．aswas	LDY	M 420	1880 1990			${ }^{12} 10$ str	3040 3050	． n －wosb2	LDX	\＃AZ MIV $25 E$			AND	$\begin{aligned} & \& 220 \\ & 8.8006 \end{aligned}$				
740		JSR datim1			1900		Jon		3060		RTS		42004210		BEO wstz				
750					1910		LDA	\＃c\％Mod 256	3070	． n wosb5	\％		4220		Lin 88007				
760 770				1920		STA		3080			\＃8ce	42304240							
780				1930 1940		STA	150	3090 3100		TXA	nevowby	4250		LDA $80000, x$					
790	JSR osretJSR reosinJmp bikotz			1950		LDY	no	3110		AND	mbr	4260		ENE USt1					
800				1960		STY	lanoflg	3120		tax		42704280		LDA \＆8001，x					
820 830	．Osarg＊	！		1980 1990	．cet 17	JSR	${ }_{0}{ }^{1}$	3140 3150	．newosb 7	JMF．	（oldosb）	42804290		$\text { STA \& } 18$					
840		JSR	reosi1	2000		CMP	HD\％MOD 256	3150 3160	．peomm ．pstat	STA	88000			：					
日50		JSR	mFFDA	2010		BNE	cst 17	3170		NOP		4310		bcs ust 4					
850		JSR	osrdi	2020		LDA	1	3180		NOP		4320. wst 2		Bir langilg					
870		JMP bikout		2030		CMP	＊D\％DIV 256	3170		LDA	\＆ 8 Ood	4350							
${ }_{89} 890$	．05bget			2040		${ }_{\text {BNE }}^{\text {JMP }}$	cst17	3200		CNE potat									
900		JSR	\＆FFD7	2060			（earf）	3210 3220		LDa enisrom		4360+370		BEQ wstgg					
910			osrdt	2070	．message 1	Equ	\％${ }^{\text {d }}$	3230	．pselect			43804390		LOA 854	3F4				
920 930	．asbput	：		2080		Equs	＂E2P 0．1＂	3240		JSR	pstat			CMP \＃\＆C	wst588000				
940		JSR	\＆FFD4	2090		ERUE	${ }^{20}$	3250 3260		JMP		4400		SMP					
950		JMP	osr $+t$	2110		：		3270	．sidesel	STA	854	4420		：					
960		＇		2120	．nessage2	Edus	＂SECOND PROCESEOR＂	3280		LDA	＂kc	4430	wsts	LDA					
970	．0sifnd	JSR	reosil	2130		EOUB	2D	3290		STA	seos	4440		JSk	ust 100				
980		BEC	0s15	2140		eque	80	3300		LDA	8 F 4	4450	．wst 7	JSR	pload				
990 1000		PHA		2150		Eque	－	3310		STA	${ }_{8} \mathrm{FE} 05$	4460		日1T	1				
1000		JSR	datin	2160		1		3320		RTS		4470		EvS	wst12				
1030		JMP	osrdi	2180 2190	－prnmesz	LDE		3340 3350	．instr	${ }_{\text {CMP }}$	\％${ }_{\text {minctr }}$	4490	．wstic	LDA					
1040				2200		JSR	\＆FFE3	3360		CMP	＊kco	4510		ads	\＆ 17				
10510	．0s113e	JSR	datin	2210		INX		3370		BCC	tnsty 3	4520		LDA					
1060		JSR	datin	2220		BNE	primes 2	3380		ASL	814	4530		ADC	818				
1090		LDY	no	2240	．Rserv	CPX	thismam	3400 3410		CMP	instr2	4 ＋560							
1100		LDA	${ }^{88016}$	2260		bNE	Rserv3	3420		cle		4570	．wst12	LDA	meff				
1110		JSR	SFFDD	2270		1		3430		RTS		4580		STA	langilg				
1120		JSR	osrdi	2280		CMP	＂9	3440	．instr 1	STA	815	4590	－wst9\％	LDA					
1130 1140			${ }^{\text {\＃k，} 12}$	2230 2300		BNE	Rserv2	3450 3460	－instr ${ }_{\text {instr }}$	RTS	\＃k40	4610	．wst 100	PHA					
1150		JMP	blkout2	2310		BPL	Rserv2	3470		CMP	\＄15	4620	．wst 110	LDA	mafF				
1160		－		2320		JSR	primes	3480		ENE	Instr2	4630		JSR BCC	Instr				
1170	．059bpb		R datin	2330		LDA		3490		LDA	${ }_{814}^{48}$	4640 4650		$\begin{aligned} & \text { BCC } \\ & \text { PLA } \end{aligned}$	wst 110				
1180 1190				2340 2350	．Rserv2			3500 3510		STA	${ }_{814}^{814}$	46E0		LDX	＂\＆：7				
120		JSR	\＆ 8 FDi	2360	er	BNE	Rservis	3520		，		14670		Loy					

4680		JmF．	anstr	5840			main3	7000				8160		PHA	
4690		：		5930		：		7010			（8202）	8170		tra	
4700	．regsout	STY	：8018	5860			osjmp－cod $400+8401$	7020	ira7	LDA		9180		PHA	
4710	．regsol	STX	28017	5970			0． jmp －cod $400+8400$	7030		RTI		8190		JSR	tclear
4720	－regsoz	STA	sbore	5880			mas n	7040		：		8200		LDX	\＃0
4730	－regso3	FOL	A	5990		4		7050	－ J jmp	JMP	（\％220）	8210			sFo
4740		STA	88.15		ax＝ax－v\％＋u			7060		1		8220		LDY	${ }^{2} \mathrm{FD}$
4750 4760		FOF	A		PY＝\＆FF ${ }_{\text {OPT }}$			7070		JMP	（ 8210 ）	8230			afe
4760		FTS			（ OPT I			7080		JMP	（z21A）	日240		JSR	datinio
47719		：		5930 5940				7090		JMP	（2218）	8230		PLA	
4790	－regsin	LDX	28017	5940 5950			Resp	7100		JMP	（ 2216 ）	8260		tay	
4790	－regsil	LDY	28018	5950				7110		JMP	（\％214）	8270		PLA	
4 BuO		LDA	P8016	5960		EQUB		7120		JMP	（2212）	8280		tax	
4819		RTS		5970			${ }^{\circ}$	7130		JMP	（\％210）	8290		PLA	
4920		：		5980		Equs	＂（C）＂	7140		CMP		8300		STA	4FC
4830	－datin	Luy	＊0	5990				7150		BNE	LfFEE	8310		JMP	（\＄202）
4840	－datinl	LDX	＂O	6000				7160		LDA	4\％A	8320			
4850	－datanz	Hit	28019	6010		tor		7170		JSR	hFFEE	8330	．osrach 10	LDA	moardeh Mad 236
4860		Evir	datins	6020 6030	t			7180		LDA		8340		JSR	oscomm
+870 4880		HM1	${ }_{\text {dating }}^{\text {deila }}$	6030 6040	．reset2	$\begin{aligned} & \text { TXS } \\ & \text { LDA } \end{aligned}$	codt abe－sfa，X	7190 7200		JMP	（ 820 L 200 ）	8350		JMP	r eosinit
4890		STA	8， $7 \ldots \ldots$ ，	6050	．reset 4		8FBOO，x ，	7210		JMP	（820A）	8370	．00clito	LDA	Moselı MOD 256
＋400		HVS	Uatı？	6060		STA	\％ 4 AOO，x	7220		JMP	（\＄200）	8380		STA	\＆FF13
4910		：		6070		DEX		7230			anrt	8390		JSR	txtoutio
4920	datins	EFLL	dutalo	6080		CMP	M8C9	7240		EQul	reset	8400		JMP	osstat
4930		Cry	\＃2：	6090		BNE	resetz	7250		Equw	anrtı	8410			
4940 4950			${ }^{\text {untatinc }}$	6100 6110		${ }_{\text {DEX }}^{\text {DMI }}$	reset4	7260	c\％$=0 \%-\mathrm{vz}+$	J		8420	．ostrytelo	${ }_{\text {CMP }}$	${ }^{48} 88$
4960		BCL	dat2，${ }^{\text {a }} 7$	6120			＂test 7 mod 256	7280	P\％＝\＆FBOD			8440		CMP	M\＆86
4970		L－Y		6130		STA	maffe	7290	［ OPT 1			8450		BCs	osbytels
4980		Hrs	datar 7	6140		BNE	test7	7300	．tciear	LDA	8fFie	8460		TAX	
＋970		：		5150		$\stackrel{1}{ }$		7310		Sta	8FF 14	8470		Lor	osbtab－882，x
5000	－datanco	LDA	\＆Bula	6160			＂0	7320				8480		LDX	\％
5010		STA	נ，Y	6170 6180			cyeleot	7330		STA	$35 F 13$	8490	．anrtsto	RTS	
5020	－datan＇	cLV		6180				7340			4FF19	6500			
5030 5040 50	．dating	Six INY	28113	6190 6200		STA	Cryctoct	7350 7360		STA	4fFib	e810	．onbtab	Eque	8
soso		EVE	datino	6210		CMP	890	7370	．tclear 10	LDA	\＃ras MOD 236	8530		EQub	8 80
5060		LDY	47	6220		STA	\＄90	7380		STA	\＆FFE	8540		Eque	\＆ 80
5070		Fis		6230	，codtab＊	RTS		7390		LDA	＂nmi MOD 236	8550			
5080		：		6240		＋		7400		STA	affra	8560	．ombytels	CMP	mada
50930	． 011 l	LDX	\％－	6250	－aral	FHA		7410		：		9570		BNE	osbyte 20
5100 5110	．bllaut	Luy	＂1／	6260			2FEES	7420 7430	tclear 20			8580 8590			
5110 5120	．blloutz	S1x		6270 6280	．ivec		\＄200	7430 7440		STA	\＆FFOD	88500		TVE	osbytals
5130	．blkouts	CPr	B1a	6290		INC	ivect 1	7450		：		8610		BNE	osbytela
5140		Ef0	intults	6300		BNE	$1 \mathrm{ra}^{2}$	7460	．test 12	CMP	\＃kc	8620		LDA	LfFiE
5150		LDA	a．r	6310		INC	1vect2	7470		BNE	testis	8630		STA	4FF 14
5160		JuF	datcut	6320	． 12 ra 2	PLA		7480		LDX	MefF	8640	－0sbytel 18	LDA	M\＆DA
5170		INY		6330	．anrts	RTI		7490		TXS		${ }^{6650}$	．onbytezo	JSR	r－gsolo
5180 5190		ENE	bithouts	6340 6350	．cyel＊	${ }^{\text {JSR }}$	85 BOO	7500 7510		LDA	${ }_{8 F F} 11$	8660 8670		LDA	Hosbyte MAD 236
5200	．txtout	LDX		6360			cyel ${ }^{\text {a }}$	7520		LDA	\％ 510	8680		JMP	r regsinio
5210		L．Dr	Ho	6370		ORA	0	7530		PHA	－	8690		：	regerno
5220	－thtout2	L．JA	2700， r	6380	．cye lues	RTS		7540		SEI		9700	．oswordio	8TA	\＆fFi6
5230		JSk	datuut	6390		：		7550		FHP		8710		LDA	Mosword MAD 236
5240 5250		INY	－ 6 D	6400 $6+10$	．$n \mathrm{~mm}$	PHA		7560 7570		JSR	tel	日720 8730		STA	4FF 13 $4 F F 16$
5260		bNE	ixtout 2	64.0			cycto	7580		RTI		8740		BNE	oswdis
5270	－txtunts	L－DX	M8，${ }^{\text {a }}$	6＋30		1		7590		：		9750		LDA	
5280 5290	．datout	NO		64．10	．test	CMP	＂ 9	7600	test 15	CMP	＂128	8760		JSR	bl kout 10
5300		NOF		6450 6460		${ }_{\text {EVPC }}$	test2	${ }_{7 \in 20}$		BEQ	$t=19 t 92$ $t=0 t 92$	${ }_{8780} 8780$		JSR	osstat
5310		Hit	zeote	6470		LDA	＊\＆日	7630		：		8790		BCS	anrts 10°
5320 5330		EVE	detout	E4HO		BNE	test 4	7640		CMP	\＃8\％ 5	8800		LDY	
5330 5340		SMI	datout	6． 40		：		7650		bne	test 20	8810		LDA	（893），Y
5350		STA six drem	8．0，16 8.8018	6500 6510	－temt	LDA	38 ad	7660 7670		TAX		8820		TAX	
5360		FTS		6520	．testa	LDA	erfio	7 7ebo		INX		8840		LDA	（893）， Y
5370		Loy		6530			1val 1	7630		STX	8FF	8850		tay	（493）
5380	－newbrk	LDY	\＃2FF	E．540		LDA	砳F11	7700		LDX	\％ 23	8860		JMP	datinio
5390 5400	．newbrk2	INY	（\％FD），Y	6550 6560			$1 \mathrm{vec}+2$	7710 7720		STX	8FFIE	8870			
5410		STA	L20，${ }^{\text {r }}$	6570			Mral MOD 256	7730	test17	SIA	vactab，x $2000, x$	8889 8890	．osud 15	STM	4F\％
5420		TAX		6580		STA	sFFFE	7740		DEX		8900		BCC	oswal 7
5430		BNE	noubrk2	1590 66.10			Manrta MOD 256	7750		bpL	test 17	8910		LDA	\＃he
5440 5430		TYA		66.10 6610		STA	${ }_{\text {LFFFA }}^{\text {Lest }}$	7760		JSR	＊－Et17	8920			
3460		3NY		CL．$=0$		BRT．		7770	－test 18 A	JSR	tclear	8930	．oswd	tax	
5470		STY	814	6630		NOP		7790			testig	8950		STA	8FF 18
5480 5490		LDY	\＃ 20 peselect	$66,+1)$ 6650		cll		7800	－testzo	CMP	usco	0960		LDA	oswito－1， X
5690 5500		JSRA	P8．el＊t Wke	6650 $6 E 60$	－toste	cli		7810 7820		BNE	test 25	8970		STA	\＆FF 17
5510		JRR	promm	6671，		STA	8FFOD	7830		STA	\＆FF ${ }^{\text {cos }}$	89990		LDA	oswoto－1， x
5520		JSR	bikout 3	6EBO	．testr	JSR	cyci．	7840		BMI	test92	9900		JSR	blkout 10
5530				6690		BNE	test	7830		：		9010		JSR	ossitat
5540 5550	．main	LDX	M\＆FF	6700		BEO	$t=s t 8$	7860	．test90	LDA	2ffra	9020		LDA	\＄FFiP
5550 5560	．mainz	TXS		6710 6720	－testic	JMP	test 12	7870		CMP	Manrti Mod 256	9030		AND	＂\＆ 15
5570		LDA	thisROM	6730	－regsinio	LDY	\％fF ${ }^{18}$	7880		SNE	test9s	9090		JSR	datinlt
5580		JER	sidesel	6740	．regsin1t	Lox	4FFIT	7900		Jrp	testy	9060		Jmp	bliout19
5590		CLI		6750	－reosin 12	LDa	4FF is	7910	．test92	JgR	telear 10	9070	．osargsto	JSF	regsolo
5600	．maln3	LDX	＊8014	6760		ROR	A	7920		PLA		3080	．	LDA	Mosargs mod 236
5610 5620		SEQ	masi	6770 6780		LDA	8FF 16	7930		RTI		9ryu		STA	4FF13
5630		LDA	\％ 0	6780 6790		RTS		7940 7950	．test95		teltar 20	9110 9110		LDr	
5640		STA	88014	6800	． 2 ras	STA	8FC	7960		PLA		9120		CLD	
5650		${ }^{8}$		6810		PLA		7970		RTI		9130		JSF	bltoutio
3660 5670	．maina	LDx	${ }_{88015}^{8801 D}$	${ }_{\text {E830 }}^{6810}$		PrA	＂ 4	7980		$\stackrel{1}{4}$		$91+17$		JTR	osstat
5680		beco	mains	6840		PHA	＊ 10	7990 8000	．test 25	CMP		9150 9160		JSF	datinio
5690		：		6850		bea	ira	8010		TXA	test30	9170		JMF	
5700		INX		6860				8020		PHA		9180	．osbget10	STY	4FFis
5710 5720		${ }_{\text {CPX }}$	mirq1 MOD main ma	6870 6880		TXA		8030		TYA		9190		LDA	Mosbget MOD 256
5730		LDC	manif	6880 6890		PHA		8040 8030		PHA		9200	．osbget 12	JSR	0scoiman
5740	．man 7	LDA	4，6000，x	6900		LDA	8103，x	8060		LDY	\＆FFOF	9220			
5750		STX	28010	6910		clo		8070		LDA	${ }_{\text {a FF }} 10$	9230	．osbput 10	JSR	regsolı
5760 5770		JISR		6920		SEC		8080		JSR	－vjup	$92+0$		LDA	Wostoput mad 236
5770 5780		JMP	mas ${ }^{\text {n }}$	6930 6940		SEC	＂1	8090 8100		PLA		9250		BNE	osbget 12
5790	．main 9	LDA	48013	6950		LDA	8104，x	${ }_{8110} 810$		play		9270	．0sisindio	JSR	regsolo
5800		BEQ	mainz	6960		SBC	\％	8120		Tax		9280		FHA	
5910				6970		STA	\＆FE	8130		JMP	t－st90	9290		LDA	Mosifind MOD 256
5920 5930		LDX	\＄801D	6980		FLA		8140		：		9300	－	STA	4FF 13
\＄830			8801E	6990		TAX		8150	－test30	TXA		9310		PLA	

Electronics - Microprocessors - Computer Technology is the career and hobby of the future. We can train you at home in a simple, practical and interesting way.

- Recognise and handle all current electronic components and 'chips'.

- Carry out full programme of experimental work on electronic computer circuits including modern digital technology.
- Build an oscilloscope and master circuit diagram.
- Testing and servicing radio - T.V. - hi-fi and all types of electronic/computer/industrial equipment.

NewJob? New Career? New Hobly?
 SEND THIS COUPON:NOW

UNIVERSAL EPROMAMMER MKII

In which Gordon Bennett jumps to all the right subroutines so that you can blow your EPROMs and blow your minds with the software for Mike Bedford's better programmer.

When the original articles for the Universal Eprom programmer were published, I was in the process of looking for a new Eprom blower, as the one I was using was horrendously slow. It was a much modified serial driven device originally published in the December 1978 'Computing Today', when this was still a supplement given away in ETI.

However, it was several months before I embarked on the construction of the Universal Eprom Programmer board. It then became apparent that the control software was somewhat unwieldy in its form of both a machine code and BASIC program and that something easier to load and use was required. This prompted me to write a suitable control Eprom for use in the spare slot at E800h in the Microtan memory map.

This Eprom eventually found its way into the hands of Mike Bedford and led to a phone call in which he asked if I would be interested in writing the software for a new enhanced version of the programmer that was under development. The new programmer was to be capable of supporting the interactive programming algorithms which allow the larger devices to be programmed in much reduced times, a 27128 in about 2 minutes and a 27512 in 7 minutes.

The resulting program is described in this article. An idea of the Eproms supported can be gained from Table 1, which also gives a list of those that have
actually been programmed using the new hardware and software.

One reason for creating the software package in an Eprom is that it saves considerable time not having to load both a BASIC and machine code program from tape. Those with discs will not find this so much of a problem, of course. Another reason for using an Eprom
based package is the efficient memory utilisation. There never seems to be enough memory available even when you have a lot. People with small memories (Sorry! people with small computer memories) are in an even worse position. It is annoying to have a large chunk of your computer memory taken up by the

EPROM TYPE	SOFTWARE SUPPORTED	ALGORITHM FAST/SLOW	WHETHER PROGRAMED
2758	YES	S	NO
2716	YES	S	YES
2516	YES	S	NO
2732	YES	S	YES
2732A	YES	S	NO
2532	YES	S	YES
68732	NO		
2764	YES	F/S	YES
2764A	YES	F/S	NO
2564	YES	F/S	NO
68764	NO		
27128	YES	F/S	YeS
27128A	YES	F/S	NO
27256	YES	F/S	YES
27512	YES	F/S	NO
27513**	NO		
2816**	NO		
2864	NO		

*The 27513 is selectable in four 16 K banks, each of which is programmed as if it were a 16 K Eprom in its own right. Although the programmer software will handle 16 K Eproms there is no ability built into it to allow to allow the bank selection mechanism to operate.
** The 2816 Eprom requires only a short pulse to initiate the internal programming cycle followed by a delay of 10 ms to allow completion. The software does not support this as it stands but would need minimal changes to allow the use of this device.

Table 1 EPROMs supported by the programmer.
control programs. It often means making two passes when programming.

Ease of use is of prime importance in a package of this type and to this end it has been made as simple as possible to move back and forth between Eprom programmer software and Tanbug monitor. The programmer software has both a cold and warm start vector, the cold start is at E800h and the warm start is at E803h.

The software should always be entered the first time at E800h as this performs the initialisation of the PIOs. If it becomes necessary to leave the programmer, when developing software with an assembler or using the Tanbug monitor facilities, then re-entry is via E803h.

The provision of memory modify and list commands was not necessary. The ease of movement in and out of the program makes it simple to use the Tanbug and X bug monitor commands for modification, listing and disassembly. There is one command, however, that is useful for displaying the contents of memory, both on the screen and on a printer: the Dump command. It was developed as an aid to give hexadecimal printer dumps of areas of memory, during Eprom development.

The software actually implements three different Fast programming algorithms depending on the type of Eprom being programmed. For the 2764 and 27128 the flowchart is similar to the one featured in the original article (ETI, August 1983). The 27256 and 27512 are slightly different and this is reflected in the flowcharts of the algorithms for these two Eproms (Figs. 1 and 2). The method used by the 27512 should be quicker than that for the 27256, and approximate times for those Eproms programmed so far are shown in Table 2.

Points Of Note

The present package (EP3V75) will support the new hardware for both fast and slow methods of programming. It will not support the original hardware as I/O bits are assigned to the PIO ports in a different way. Whilst the package will work with Tanbug V2.3 and V3.1 it will not work with V1.0, because of the way in which the system routine calls are vectored through the jump table at the beginning of Tanbug.

In a 2 K package such as this it is not possible to include all desir-

EPROM TYPE	SIZE	PROGRAM stow	FAST	TEST	VERIFY
MEASURED TIMES					
2716	2 K	1.75 m	-	1.25 s	1.25 s
2732	4 K	3.5 m	-	2.5 s	2.5 s
2532	4 K	3.5 m	-	2.5 s	2.5 s
2764	8 K	7.5m	1 m	5s	5 s
27128	16K	15.5 m	2 m	10s	10s
27256	32K	30 m	4 m	20s	20s
ESTIMATED TIMES					
2758	1 K	0.8 m	-	0.6 s	0.6s
27512	64 K	60m	7 m	41s	41 s
Table 2 Approximate programming speeds.					

Fig. 1 Flowchart for 27256 programming routine.

Fig. 2 Flowchart for 27512 programming routine.
able features - particularly totally comprehensive error checking. Providing a sensible approach, the error checking should be adequate. Entering only the command letter when parameters are required will cause the command action to operate on the first byte at the present Base. Entering parameters in the wrong order will be trapped and a '?' displayed.

Testing a 27512 Eprom must be done in two 32 K parts, and will produce two 'EPROM ERASED OK' messages, approximately 20 seconds apart. This is not an error - honest!

Hardware Configuration

The program assurnes that the Eprom Programmer board is based at address BC20h. The original Microtan screen is assumed for obtaining parameters, and in the clear screen routine. Locations in zero page from 45 h to 5 Fh , are used. The Eprom programming software re-initialises the locations it needs when entry is made at E800h. If other user programs are in memory at the same time occupying any of these locations the contents will be overwritten.

Menu And Commands

The program us started from the Tanbug monitor by typing GE800<CR>. You are then asked to enter the type of Eprom that you wish to program and the base address at which your object code resides in memory. You should then see a display of current Eprom type, current base address and the menu of available commands.

This screen display is shown below. It can be obtained at any time, when not actually executing a command, by pressing the ' H ' key.

EPROM $=X X X X X \quad$ BASE $=\$ \mathrm{HHHH}$
(H) elp
(Q) uit
(T) est
(R) ead
(V) erify
(F) ast prog.
(S) low prog.
(D) ump
(N) ew type
(B) ase

The command input format uses the capital initial letter of the command, as shown on the help menu. Some commands - 'Help', 'Quit' and 'Test' - execute immediately. Others, like 'New type' and 'Base', prompt for a further input. The rest require a parameter range. The normal format is:

X,ssss,ffff

(X is the start address in hex and ffff is the finish address in hex).
The delineator can be any non alphanumeric.

Unlike the old version of the software the range parameters do not require leading zeros. All of the following are valid commands:

R,0,7FF or R,0000,7 FF reads 0 to 7 FF .
S,801,802 slow programs 801 and 802.
F,FFF,FFF fast programs location FFF.
D/0/2 FF and D-100,1 FF both dump to the screen.

All commands that act on the Eprom socket also turn off the green LED and, in case of a programming command, turn on the red LED.

If the range of the parameters entered is too big for the Eprom type selected, the message 'EPROM SIZE EXCEEDED' will be displayed.

120 Command Description

An explanation of the com mands may be useful since there are many new features.
HELP:- gives a display of the current Eprom type, base address and the commands available, exactly as it you had just entered the program from Tanbug.
QUIT:- takes you back into the Tanbug monitor and resets the stack, after making the PIO outputs safe.

TEST:- examines the Eprom to see if all locations contain FFh. If they do, you should get a message 'EPROM ERASED OK'. Otherwise you will get a display of the addresses and contents. If there are more than fourteen locations not containing FFh, the program waits for you to press 'CR' before displaying the next lines. To abandon the display press SPACE BAR and you will be returned to the menu.
READ:- reads into memory the contents of an Eprom currently in the programming socket. Requires a parameter range.
VERIFY:- verifies that the Eprom holds the same code as the object code in memory at the current base address. If not, the code in both the Eprom and the memory will be displayed. Like the errors reported in the Test mode, this will be shown fourteen lines at a time, 'CR' will show the next screen full and the SPACE BAR will return you to the menu. Successful verification will produce the message, 'EPROM VERIFIED OK'. Requires a parameter range.
FAST PROG.:- invokes the fast programming mode for Eproms of 8 k and larger. With a smaller Eprom currently in the programming socket, it will automatically default to the slow mode to avoid damage. After successful programming there is an automatic verify of the whole range programmed, indicated by the message 'EPROM PRO-
GRAMMED, VERIFYING', which gives way to the 'EPROM VERIFIED OK' report on completion. Lights red LED. Requires a parameter range.
SLOW PROG.:- the mode for programming Eproms smaller than 8 K . With an Eprom of 8 K or larger, selection of this mode allows programming in the standard way. This allows a certain degree of flexibility, since you can program Eproms of uncertain size with a tried and tested method. The messages used are the same as for the Fast mode. Lights red LED. Requires a parameter range.
DUMP:- gives a hex dump to the screen and printer in the following format: the absolute address in memory followed by the relative address from the start of the dump, then sixteen hex bytes of data and finally a two byte check sum computed from the previous sixteen data bytes. To get printer output, enter the command and
parameters then press CTRL-P before the carriage return. Don't forget to turn off printer control afterwards, with another CTRL-P, or the program will appear to 'hang' for 10 seconds, whilst the print output routine times out. Requires a parameter range.
NEW TYPE:- the command to change the type of Eprom you are working with.
BASE:- the means of changing the start address in the memory to that of any new object code.

Way Out

A common feature of all the commands that require parameters, is that the command sequence can be aborted at any time before pressing carriage return by use of the SPACE BAR.

Without using the 'QUIT' command, the program can be left by pressing either the 'ESC' key or the 'RESET' button. Neither is recommended, since they both interrupt commands at indeterminate points. The 'ESC' key is particularly bad as it will leave the programming socket with power and signals present. If 'RESET' is used it will be necessary to restart the programmer software via the cold start vector. The reset is also issued to the PIO's, setting the ports to a safe state. They will then need to be re-initialised before they can be used again. It should be obvious when the socket is unsafe, because the green LED will not be lit.

The best method of exit is the 'QUIT' command which can only. be issued when the programmer is in a safe state and which allows faster re-entry via the warm start vector at E 803 h .

If you should chance to use 'ESC' or 'RESET', re-entry to the program will re-initialise the PIO ports and set the socket to a safe state.

Waveform Diagrams

The outputs of the programmer hardware during fast programming change rapidly compared to those resulting from the 50 ms pulses of the slow programming mode.

Figures 3,4 and 5 show the programming voltage VPP, the
supply voltage VCC and the actual program pulse, NPGM (Not PGM), as they appear on a oscilloscope for a number of different Eproms in fast mode.

Figure 3 shows the waveforms for the 2764 and 27128 . The 2764 A and 27128A are the same, except that VPP is only 12.5 volts.

Figure 4 is the diagram for the 27256 and shows the effect of having chip enable (CE) on the same pin as the programming pulse.

Figure 5 shows the waveforms for the 27512, in which output enable is on the same pin as the programming voltage, and as with the 27256, CE and PGM share a pin.

Future Developments

The author's system includes a TUG Eprom Storage Card (ECS) and he is currently developing a 4 K software package with enhanced error checking and additional routines for use with this. Features planned include support for other devices, new utilities, such as memory fill and relocation, and access to programs on the ESC and disc.

Currently being developed is a hardware interface to connect the programmer to a BBC Microcomputer and a sideways rom to allow its use. The hardware has actually been finished and tested. The sideways rom is in mid development. (Keep watching ETI - Ed.).

Fig. 4 Timing diagrams for 27256.

HOW IT WORKS

On entry through the cold start the PIOs are initialised to the correct inputs and outputs and then zeroed to a safe state. The header message is displayed and the type of Eprom to be operated on is requested along with the base address in memory where the object code resides. Then the help menu is displayed and the software waits for an input.
The program runs a background loop (GETCMD) waiting for characters typed at the keyboard. When an irput is received the character is checked againsta list of valid commands. On finding one, a jump is made to the corresponding subroutine, otherwise the program simply returns to the background loup.
Entry through the warm start vector does not initialise the PIOs or ask for Eprom type and address, as these are assumed. Instead, the menuis displayed and control passes directly into the background loop. This is intended for a quick return to the program after using the Tanbug monitor facilities. If a program has been run, such as a two pass assembler, which might have corrupted zero page locations used by the Eprom programmer software, it would be wise to return through the cold start vector.

Immediately after the two vectors (at E800h and E803h) in the Eprom there are the tables used for setting up the PIO ports in the configurations required for the functions and Eproms supported. To add other Eprom types to the software these tables would have to be extended and further entries made in the type and length parameters stored from E861h and E8C9h. This is not easy without a full disassembled listing and the use of a two pass assembler. There is no further space available in the current Eprom, so something would have to be removed, which should be no great problem as all subroutines are modular.

The screen clear routine (CLRSCN) is only called twice, from thi header at E9CF h and by the help routine at EA23 h. It will not work with 80 column boards. It is the last subroutine in the Eprom at EFEC h.

BUYLINES

For those not wishing to type in the code from the hex dump, a ready programmed Eprom complete with assembler listing is available for $\mathbf{£ 1 0 . 0 0}$, from G. J. Bennett, 35 Fowler Road, Cove, Farnborough, Hants. Alternatively, the source code (for use with the TUG two pass assembler/editor) and object code on tape are available for $£ 5.00$ from the same address. Please allow 28 days for delivery.

The hex dump and full disassembled listing will appear in ETI noxt month.

Fig. 5 Timing diagrams for 27512.

TECH TIPS

Frequency Fine Tuning for ETI Distortion Meter

Walter Wirth Sri Lanka

In the text of his Distortion Meter project (ETI, February 1985), John Linsley Hood bemoans the lack of low resistance dual gang pots for fine tuning the frequency of the notch filter. However, high resistance dual pots are available. Instead of using a low value dual pot, the same result can be obtained by using a high value dual pot in parallel.

The diagram shows the relevant circuitry from the original design with the additional components

Pulse Group Generator

Paul Cuthbertson
Inverurie
Aberdeen
The idea for this circuit arose when I needed to modulate a transmitter with a burst of 1 kHz about 100 mS long every second. The circuit costs less than a pound and has the following advantages:
a) less complex than the usual two 555 s in series;
b) low power consumption at about $800 \mu \mathrm{~A}$ (not including output stage);
c) guaranteed known number of pulses in each group or burst, all the same width (no glitches due to non synchronised gating);
d) extremely flexible, with pulse grouping depending only on diode configuration. (The only restriction on this is that each burst or burst of bursts contains 2^{n} pulses where n is a whole number between 1 and 12);
e) duty cycles and pulse arrangements do not vary with frequency;
f) frequency is easily varied by altering the resistors on pin 10 or by chopping an existing pulse train injected at pin 11;
g) maximum attainable frequency typically 8 MHz , minimum operating voltage theoretically 1 V , but not at the same time!

attached by dashed lines. A 500k linear dual pot (designated RVa, b) in series with 4 k 7 resistors (to prevent too low a minimum resistance) is wired across notch frequency control RV2a, b and associated resistors R5 and R6.

Note that R5 and R6 are given the same value of 560R. RV3 in the original circuit is deleted being replaced by the 500 k dual pot which will give the necessary non-interactive fine tuning capability mentioned in the original article.

The circuit works by dividing the square wave on pin 9. Various counter outputs are available to do the gating. In the example shown, only when 8,9 and 10 are all high' will pulses be output. R1, R2 and C1 set the operating frequency using the 4060 's internal clock circuitry. R3 prevents the O outputs conflicting with pin 9. There are residual pulses remaining when the O outputs are low, and R4 and R5 form a divider which prevents the output transistor, Q1, turning on with these 0.7 V pulses. (A foward-biased diode in the base of the transistor often serves the same purpose.)

On a more speculative note:
a) use the 4040 or 4020 'sister chips' (ouch, that Hertz!) which have different sets of outputs avail-
able (but no built-in clock circuitry);
b) türn the diodes round (all of them, note) to get a'disabled high' with different patterns;
c) some of these chips have Schmitt inputs - inject a sine wave;
d) use another transistor to invert a set of diode outputs, summing the result of this back into the system to get bursts of pulses other than 2^{n} in number;
e) feed one of the Qs back to reset input;
f) use a series of changeover/ centre off switches to switch diodes out of circuit, or to an inverter or the normal matrix;
g) use the gate signal itself as an output giving precise control over duty cycle at varying frequencies of input.

NOTE:
IC1 $=4060$
$01=2 N 3904$ OR EOUIVALEN
R1,2,C1 CORRESPOND TO BASIC FREOUENCY OF ABOUT 1 kHz OUTPUT IN THIS CONFIGURATION CONSISTS OF GROUPS OF 128
PULSES INTERSPERSEO BY GROUPS OF 896 'MISSING' PULSES TRANSISTOR STAGE INVERTS

Simple CMOS Frequency-Window Discriminator

Thomas Schaerer Switzerland

If you have to convert any environmental signal (temperature, pressure or humidity, for example) using a voltage-to-frequency converter, and you have to pay attention to an allowed range of signal values, then you should use the following very simple circuit. The circuitry consists of two CMOS ICs, two transistors and associated passive components. It requires a clean pulse wave input, so if your signal is noisy or irregular you should add a Schmitt-trigger stage at the front end of the circuit. The supply voltage can be between +5 V and +15 V - although this will affect the precise pulse widths involved, which should therefore be independently measured for accurate calibration. With a low Vcc, R4 can be as low as 470 . If Vcc is 15 V , however, R4 should be a minimum of 1 k 5 .

IC1 is a dual, retriggerable monostable.

IC1a detects the input frequency. A positive-going input pulse will trigger an output pulse of width given by $\mathrm{R} 1 \times \mathrm{Cl}$. If another
pulse appears on the input before the output pulse finishes, the output will be retriggered. So, if the frequency of the in put exceeds a given limit, fmax (equal to $1 / R 1 \times C 1$), the output on pin 6 will be high for the duration of the input signal (and for a short time thereafter until IC1a resets itself). The signal on pin 12 (the input of IC1b) will therefore go high and stay there, so that the output on pin 10 will bea single pulse of width given by the time constant R2xC2.

If the frequency of the input is below the limit fmax, the output on pin 6 will be a pulse wave of frequency equal to the input but of pulse width equal to $\mathrm{R} 1 \times \mathrm{C} 1$. Now, if this frequency is higher than fmin (equal to $1 / R 2 \times C 2$) the output of lCib will be continuously retriggered giving a high on pin 10 for the duration of the input signal (and fora short time thereafteruntillC1b resets itself). If the frequency is lower than fmin, the output of IC1b will be a pulse wave of frequency equal to the input but of pulse width equal to R 2 xC 2 .

In short, an input frequency above fmax will result in a single pulse of width $\mathrm{R} 2 \times \mathrm{C} 2$ on pin 10 of C1; an input frequency below fmin will result in a train of $\mathrm{R} 2 \times \mathrm{C} 2$ pulses on pin 10; and an input frequency between fmax and fmin will result in a high level output on pin 10. The RC network on pin 10 should have component values which ensure that

R2×C2 pulses do not reach logic high on the input to IC2a, a Schmitttriggered NAND gate wired as an inverter. R3 and C3 should have a time constant at least three times greater than $\mathrm{R} 2 \times \mathrm{C} 2$. R4 should be considerably lower than R3 (between 470R and $1 K 5 R$, depending on Vcc). Along with the steering diode, D1, R4 ensures a rapid discharge of C3, while R3 is designed to charge it slowly. With suitable values, pin 1 and 2 of IC2 will be low except when the input signal frequency lies between fmax and $f \mathrm{~min}$. This low will enable IC2c,d to transmit a 10 Hz signal provided by the simple oscillator formed by IC2b, R5 and C4. This signal is directly available on pin 4 of IC2 and is also fed to the LED via a constant current source comprising transistors Q1 and Q2 and associated components. The constant current source ensures that LED brightness does not vary with supply voltage. It should be noted that R1 and R2 must both be greater than 5 K , although there is no limit on C 1 and C2. The maximum input frequency in this circuit can be in excess of 100 kHz , although the accuracy of the circuit at this end of the range and even more so, at the low end of the range when using large-value electrolytics, may be uncertain. For adjustment of ranges and calibration, it would be possible to replace R1 and R2 by suitable pots in series with fixed resistors of 5 k or more.

PCB FOIL PATTERNS

The foil pattern for the Heat Pen, held over from last month.

The foil pattern for the Noise Gate PCB.

ETI PCB SERVICE
In order to ensure that you get the correct board，you must quote the reference code when ordering． The code can also be used to identify the year and month in which a particular project appeared：the first two numbers are the year，the third and fourth are the month and the number after the hyphen indicates the particular project．

Note that these are all the boards that are available－if it isn＇t listed，we don＇t have it．
Our terms are strictly cash with order－we do not accept official orders．However，we can provide a pro－forma invoice for you to raise a cheque against，but we must stress that the goods will not be dispatched until after we receive payment．

－	E／8106－8 Wad Phase．．．．．．．．．．．．． 1.76
\square	E／8106－9 Alien Altack．．．．．．．．．．．． 4.00
\square	E／8107－1 System A－Input（MMMMO ．． 3.05
\square	E／8107－2 System A－Preamp ．．．． 5.95
\square	E／8107－3 Smart Battery Charger ．．． 2.27
－	E／8108－5 Watchdog Home Security（2 boards）
\square	E／8109－1 Mains Audio Link（3 bds）．． 8.45
口	E／8109－4 Laboratory PSU ．．．．．．．．．． 5.21
口	E／8110－1 Enlarger Timer．．．．．．．．．． 3.91
\square	E／8110－2 Sound Bender．．．．．．．．．． 3.05
口	E／8111－1 Voice Over Unit ．．．．．．．． 4.57
口	E／8111－3 Phone Bell Shifter．．．．．．． 3.40
－	E／8112－4 Component Tester．．．．．．． 1.71
1982	
\square	E／8202－2 Allez Cat Pest Repeller ．．．1．93
口	E／8202－5 Moving Magnet Stage ．．． 4.01
\square	E／8202－6 Moving Coil Stage ．．．．．． 4.01
\square	E／8203－4 Capacitance Meter（2bds） 11.66
\square	E／8205－1 DV Meg ．．．．．．．．．．．．． 3.13
\square	E／8206－1 lon Generator（3 bds）．．． 9.20
\square	E／8206－4 MOSFET Amp Module ．． 7.80
\square	E／8206－5 Logic Lock ．．．．．．．．．．．．． 3.52
\square	E／8206－6 Digital PWM ．．．．．．．．．． 3.84
\square	E／8206－9 Oscilloscope（4 bds）．．．． 13.34
\square	E／8212－2 Servo Interface（2 bds）．． 6.75
\square	E／8212－4 Spectracolumn ．．．．．．．．． 5.54
1983	
\square	E／8301－1 Fuel Gauge．．．．．．．．．．．． 3.45
\square	E／8301－2 ZX ADC．．．．．．．．．．．．．． 2.59
\square	E／8301－3 Programmable PSU．．．．． 3.45
\square	E／8303－1 SoundBoard ．．．．．．．．．． 12.83
\square	E／8303－2 Alarm Module ．．．．．．．．． 3.62
\square	E／8303－3 ZX81 User Graphics ．．．． 1.07
口	E／8303－4 Logic Probe．．．．．．．．．．． 2.50
口	E／8304－1 Real Time Clock ．．．．．．．． 8.74
\square	E／8304－4 Stage Lighting－Main ．． 13.73
\square	E／8304－5 Stage Lighting－Display 3.45
\square	E／8305－1 Compressor／Limiter ．．．． 6.19
\square	E／8305－2 Single PSU．．．．．．．．．．．．．3．16
\square	E／8305－3 Dual PSU ．．．．．．．．．．．．．． 4.01
\square	E／8305－4．2 NDFL Amp ．．．．．．．．．． 7.88
\square	E／8305－5 Balance Input Preamp．．． 3.23
\square	E／8305－6 Stage Lighting Autofade ．． 6.19
\square	E／8305－7 Stage Lighting－Triac bd ． 4.74
\square	E／8306－1 to 3 Pseudo ROM（3bds）． 3.62
\square	E／8306－5 Atom Keypad．．．．．．．．．．． 5.18
\square	E／8307－1 Flash Sequencer．．．．．．．． 2.67
\square	E／8307－2 Trigger Unit Main Board．．． 2.67
	E／8307－3 Trigger Unit Tran

E／8307－4	Switched Mode PSU．．． 16.10
E／8308－1	Graphic Equalisr．．．．．．．． 9.10
E／8308－2	Servo Fail－Safe（4 off）．．． 2.93
E／8308－3	Universal E PROM prog ．． 9.64
E／8309－1	NiCad Charger／Regen ．．． 3.77
E／8309－2	Digger．．．．．．．．．．．．．．．． 3.40
E／8309－3	64 K DRAM ．．．．．．．．．． 14.08
E／8310－1	Supply Protector ．．．．．．．． 2.19
E／8310－2	Car Alarm．．．．．．．．．．．．． 3.98
E／8310－3	Typewriter Interface ．．．． 4.17
E／8311－1	Mini Drum Synth ．．．．．．． 3.07
E／8311－2	Alarm Extender．．．．．．．．． 3.21
E／8311－3	Multiswitch ．．．．．．．．．．． 3.59
E／8311－4	Multiple Port ．．．．．．．．．．． 4.34
E／8311－5	DAC／ADC Filter ．．．．．．．． 3.22
E／8311－6	Light Pen ．．．．．．．．．．．．．． 4.60
E／8311－7	Logic Clip．．．．．．．．．．．．． 2.51
E／8311－8	MC Head（JLLH）．．．．．．．． 3.17
E／8312－1	Lightsaver．．．．．．．．．．．．．． 1.85
E／8312－2	Ato－D Board．．．．．．．．．． 12.83
E／8312－3	Light Chaser（2 bds）．．．．． 7.54
E／8312－4	ZX Alarm ．．．．．．．．．．．． 6.04
E／8401－1	Vector Graphics ．．．．．．．． 8.27
$E / 8402-1$	Speech Board

（Mini Mynah）Board
E／8402－2 MP（Modular Preamp）Disc input（mono）
.3 .73
E／8402－3 MP Output stage（stereo） 3.73
E／8402－4 MP Relay／PSU．．．．．．．．．．． 3.73
E／8402－5 MP Tone，main（mono）．．． 3.73
E／8402－6 MP Tone，filter（stereo）．．． 3.73
E／8402－7 MP Balanced output（st）．．．3．73
E／8402－8 MP Headphone amp（st）．．． 3.73
E／8402－9 MP Mother board ．．．．．．．．． 9.01
E／8403－1 Power Meter ．．．．．．．．．．．．． 5.81
E／8403－2 Z80 DRAM．．．．．．．．．．．．．． 9.79
E／8403－3 Obedient Die ．．．．．．．．．．．．． 3.76
E／8404－1 School Timer．．．．．．．．．．．． 4.07
E／8405－1 Auto Light Switch．．．．．．．． 4.01
E／8405－2 ZX81 EPROM Prog．．．．． 10.53
E／8405－3 Mains Borne RC ．．．．．．．．． 5.07
E／8405－4 Centronics Interface ．．．．． 4.09
E／8405－5 Vario ．．．．．．．．．．．．．．．．．．． 6.62
E／8405－6 Midi Drum Synth ．．．．．．．． 3.59
E／8406－1 Oric EPROM Bd．．．．．．．． 19.58 E／8406－2 Spectrum loystick ．．．．．．． 3.30 E／8407－1 Warlock Alarm ．．．．．．．．．． 8.19 E／8408－1 Joystick Interface．．．．．．．． 3.07 E／8408－2 EPROM Emulator．．．．．．．． 9.11 E／8408－3 Infrared Transmitter ．．．．． 3.70 E／8408－4 Infrared Receiver．．．．．．．． 3.98 How to order：indicate the boards required by ticking the boxes and send this page，together with your payment，to： ETI PCB Service，ArgusSpecialist Publications Ltd， 1 Golden Square，London W1 R 3 AB ．Make cheques payable to ETI PCB Service．Payment in sterling only please．Prices subject to change without notice．

Total for boards
Add 45p p\＆p
Total enclosed

PLEASE ALLOW 28 DAYS FOR DELIVERY

0.45
£．
Signed
Name
Address

528T Multitester

Hardware

Semiconductor Supplies
International Ltd.
Dawson House
128/130 Carshalton Road Sutton
Surrey SM1 4 RS
price: $£ 31$ plus VAT

DM30 Multitester

Hardware

Selectronix

Tower House
Lower Kings Road
Berkhamstead
Herts HP4 2AB
price: $£ 39$ plus VAT

There seems to be a smallish flood of low price digital multimeters incorporating transistor testers coming to the market right now. The two reviewed here are
typical of most cheaper DMMs. The inclusion of the transistor test facility, however, makes them definitely attractive to the home constructor.

Understandably, there is a certain amount of resistance to the idea of using DMMs. As with digital watches, the display is nowhere near as immediate as the scale on an analogue meter. Personally, I find the lack of a calibration feature also annoying - I can never quite trust the reading 1 get, even though the accuracy is clearly high and the DMM circuitry undeniably reliable.

The manufacturers of the DM30 claim an accuracy of 0.5\% on the DC voltage scales, while the 528T's manufacturers claim 0.8% on the same scales. There was a distinct difference in their readings under test, although in both cases the accuracy was clearly better than 1% and the differences were barely significant. In that respect these meters were both undeniably useful instruments, despite my prejudices.

Both meters originate in Taiwan, the DM30 coming via a Swedish distributor. The 528T, although cheaper, is the most attractive of the two and includes an integral stand, an idiot proof socket for transistors under test
and standard $3 / 4$ inch probe sockets. Unfortunately, it only boasts 14 ranges (including the $H_{\text {FE }}$ measurements scale for testing transistors).

Both meters incorporate readable $31 / 2$ character, $1 / 2$ inch LCD displays, but the DM30 has 29 ranges (if you include NPN and PNP transistor testers, a battery tester, a diode tester and continuity buzzer setting). The DM30 allows AC current measurement and a wider range of $A C$ voltage measurement than the 528 T . There is a $10 \mathrm{~A} D C$ current range, too. It also gives an indication of a low battery condition when the meter's internal PP3 battery runs down to less than 1 V .

Major disadvantages of the DM30 are the price ($£ 46.57$ including VAT and post and packing), the somewhat confusing and non-standard probe sockets and the rotary range setter which could lead to problems with NPN and PNP transistors being tested for HFE and with AC and DC ranges. The meter does seem to be well-protected, but this leads me to one other problem with the DM30.

In the course of reaching these shores, it seems to have acquired the title 'DM30' from nowhere.

The manual makes no reference to this model, recognising only a 105, a 208 and a 305 version of the meter. It doesn't take a great deal of detection to work out that the DM30 is acutally the 305 version (where are the other twor), but the need for any detection doesn't exactly inspire confidence in what is otherwise a comparatively full and useful guide (including somewhat confusing but potentially valuable circuit diagrams).

That said, the choice between the two meters comes down to this: the 528 T is the winner ergonomically and in terms of style; while the DM30 is undoubtably the more versatile. Unless you're desperately counting your pennies (in which case, I'd recommend a cheap analogue meter), the DM30 is probably the better buy. Although it couldn't, for example, be used with ETI's Heat Pen (unless you take the 10A socket to be at earth potential, since otherwise common and voltage sockets are not spaced at $3 / 4$ inch), it incorporates all the voltage, current and resistance ranges you're ever likely to need. I think that's worth an extra $\mathbf{£ 1 0}$ or so.

Gary Herman

that there is a real difference at Cricklewood Elec cronics. That's why you should never be without the FREE CRICKLEWOOD ELECTRONICS COMPONENTS CATALOGUE, for sheer variety, comperitive prices and service from the U.K. 's number one 100% component shop No gimmicks. no gadgets or computers, just components. millons of them. all easily available by mail order calling or credit card telephone orders. Just pick up the phone lor a penl to get vour FREE copy now (no SAE required). You have nothing to lose.

CRICKLEWOOD ELECTRONICS LIMITED

40 Cricklewood Broadway, London NW2 3ET
Tel: 01.450 0995/01.4520161
Telex: 914977

REVIEWS

MICRO
 PROFESSOR
 MPF-1/88

Hardware

Flight Electronics
Flight House
Quayside Road
Blitterne Manor
Southampton
Hampshire SO2 4AD

price: £325 plus VAT

With so many cheap microcomputers around, it's a legitimate and often asked question as to why anyone should want to pay well over the odds for an evaluation/development system - little more than a microprocessor, some operating system ROM and a few K's worth of RAM. The system under review, for example, contains one 27128 ROM and two 6116 static RAMs along with the 8088 mpu and associated bits and pieces. That's 20 K of memory for a price of $£ 300$ odd - not, at first sight, a bargain.

Of course, the MPF-1/88 - like its Z80-based predecessor, the MPF1-P is not intended to be direct competition for a microcomputer - home, office or otherwise - and that's where the answer to the question comes in. The system is a development tool, to be sure, but its major use will undoubtably be as an educational aid. To understand its appeal and to evaluate its worth, then, it's important to bear in mind where the MPF-I/88 will end up: not in a bedroom plugged into a spare television set, nor on the desk of a busy secretary or tired executive, but on workshop benches in colleges, ITeCs and even, perhaps, schools.

The original Microprofessor MPF1-P was notable fora number of features. It was a single board system sold in a largish book-style plastic binder. Based on the Z80, it included a small rubbery, keyboard and a four character LED display, by means of which the programmer could directly access, read and alter the contents of memory. The firmware included a fairly basic machine code monitor and a very basic BASIC (which was practically unusable and which has, thankfully been dropped from the MPF1/88). What was exceptional about the Microprofessor was the documentation. Despite occasional lapses into Taiwanese English (the MPF1-P and the

MPF1/88 are both produced in Taiwan by the Multitech Industrial Corporation), the manuals were a model of clarity and compreherisiveness.

The importance of documentation in the microprocessor field cannot be overstated. There are really two reasons why an ordinary micro is not of much use when it comes to learning about MPUs: the first is the typical lack of monitor or assembler facilities (often combined with the complexity of system firmware which makes it difficult to get to grips with the heart of the machine); the second-most crucial- is the abysmally low standard of documentation for micros, especially on the hardware and system firmware level. The MPF1-P over came both of these problems by offering a simple monitor with useful input-output devices and documentation which was relatively speaking - a joy to use.

With the MPF-I/88, Multitech and their UK agents (Flight Electronics) have moved on to higher ground. The 8088 is clearly a compromise MPU, but an effective and a welcome one. The device is equivalent, from the user's point-of-view, to the Intel 8086 which is the industry standard 16 -bit processor. The 8088 is, in fact, used in the IBM PC, while the 8086 can be found in the majority of true 16 -bit machines.
The differences between the 8088 and the 8086 are subtle but significant. The ' 8 uses an 8 -bit data bus, allowing for downward compatability with much hardware developed for the 8080 and Z80 MPUS, while the' 6 uses a 16 bit data bus with the ad vantage of increased execution times. From a software point-of-view, both processors are identical - the' 8 being designed to fetch or write 16 bits in two consecutive bus cycles, while the ' 6 performs the same operation in only one cycle. Both devices can also directly address up to 1 M byte of memory by means of a 20-bit address bus.

The MPF-I/88 makes good use of the 8088. On the one hand, it is compatible with many IBM addon cards and can also read and write data in IBM tape format. On the other hand, a fairly simple modification enables many Z80 boards devised for the original Microprofessor to be used. In fact, Flight are supplying an interface which accepts up to three IBM-style cards and also reconfigures the bus to accept Z80 peripherals: an EPROM programmer, printer, sound generator and speech synthesizer. IBMstyle cards available from Flight include an RS232c interface and
a video board.
The basic system is attractive even without these add-ons. Unlike the original Microprofessor, the MPF-1/88 is properly cased and includes a full QWERTY keyboard (of adequate quality). The visual display has also been improved, by use of a two line by 20 character LCD screen. There are actually 24 'logical' screen lines which can be scrolled by use of the'ALT' keyon the keyboard.

The board itself is easily accessible and you can get to the two spare ROM sockets and the one spare RAM socket. Each of the three ROM sockets can take 8 K or 16 K ROMs while the RAM sockets can take 2 K or 8 K chips. Also accessible is the expansion bus -2×31 hole rows arranged to take an H -connector and taken out to a 64-pin card-edge connector at the back of the machine. On the back, there is also a Centronics compatible printer port, tape in and out sockets and the PSU socket.

The upgraded features like the keyboard and the LCD display have been made available, I'm sure, because of the added complexity of the 8088 . The MPF-I/88 incorporates a machine-code monitor and what the manufacturers describe as a 'line assembler', which is a straightforward and fairly comprehensive assembler/disassembler. The assembler, in particular, is easy to use and powerful - the more so because the operating system includes a number of subroutines called by using the 8088 software interrupt.

As a relative newcomer to 8086/8088 operations, I have to say that they are both lucid and powerful. It is worth considering getting hold of an MPF-I/88 to teach yourself 8088/8086 code, if only because these chips are so well thought out.

The documentation was only slightly disappointing. Regrettably, it is provided in three booklets - the UserManual, the

Reference Manual and the Monitor Program Listing - and this means you may find yourself chasing a piece of information across acres of paper. The situation is worsened by the lack of any sort of index.

All the necessary information is available, if you're prepared to look for it, and the standard of the translation has actually improved since the days of the MPF1-P. All the same, I found it annoying to have to turn to the user manual for the 8088 pin-outs and instruction set when the reference manual contains circuit diagrams and an appendix entitled 'Introduction to 8088 Assembly Language'. Logical presentation is not a strong point.
In one other respect the MPFI/ 88 documentation is less adequate than that provided with its predecessor. The earlier system manuals came complete with a useful number of well-explained model programs. There is no better way of learning programming languages - high or low level than by entering someone else's program and seeing how it works. Unfortunately, the MPF-1/88 documentation pays scant attention to this aspect of the learning process.

A more general question remains. Why spend time and money learning about 16-bit or pseudo 16-bit microprocessors when we have far from exploited all the possibilities of the familiar 8 -bits? There really is no adequate answer to that, except to invoke the virtues of knowledge for its own sake and, by the way, to say again that the 8088/8086 are more powerful and, in some ways, more logically designed MPUs than the best-known of the 8 -bits. If you're starting out with microprocessors, I'd seriously suggest you consider starting out with an 8088. If you're an old hand, well the 8088 should come easy. In either case, the MPF-1/88 will give you every oportunity to learn what the thing can do and to do a great deal of it.

Gary Herman

It appears there is more to this satellite TV thing than first meets the eye. I reported, last month, the position of the Club of 21 (the consortium which is to operate Britain's DBS television services), which does not feel inclined to accept the deal arranged by satellite supplier, Unisat. The price for Unisat's satellite services, says the consortium, is much too high. They would prefer to accept tenders from other organisations first, then choose the most desirable. The Government, however, does not see the situation in the same light, apparently preferring the Unisat solution.

The Government also holds the cards within another area of the satellite TV game: that of satellite master antenna television (SMATV) systems. SMATV refers to the type of satellite reception systems which deliver a selection of television channels, in cable form to a number of users, from a single parabolic receiving aerial. It's anticipated that such systems will be used initially in hotels, council housing estates, sheltered old peoples' homes, hospitals and blocks of flats - much like existing terrestrial based community aerial television systems. It is not unreasonable to assume that individual households may also take advantage of SMATV.

And it's this last fact which is worrying not only to the existing cable television operators, but also the Club of 21 with its proposed DBS television services, because both cable and DBS services would be undermined if individuals sidestep them and buy their own SMATV receivers.

Channel choice

Thorn EMI is one of the biggest organisations looking to SMATV for future television services. It already owns and runs three SMATV television channels: the pop video channel Music Box the film channel Premiere and the kiddies' Children's channel. Apart from operating three of the proposed six or seven SMATV channels though, Thorn EMI is also hoping to provide much of the necessary receiving equipment - parabolic aerials, converters etc - to franchises around the country. They, in turn, will
lease the equipment to SMATV users. The other existing SMATV channels are: Ten - The Movie Channel (a direct competitor of Premiere), the general entertainment Sky Channel and Screen Sport. The other channel in the pipeline (or should I say in the air?) is Cable News Network.

You pays your money...

Knowing this, it's easy to see why the Club of 21 may be worried about individuals using SMATV: the programme content of the SMATV channels is of a very high entertainment level. Of the six DBS channels, on the other hand, four must be the existing BBC and IBA channels. Only two channels of DBS transmissions, therefore, are free for new entertainment channels - even if the Government allows their use for such. The Club of 21 , with its legal obligation to relay four old-hat channels, must be feeling pretty down and worried about its commercial viability. Potential users of satellite television services may view the high entertainment content of SMATV channels as being worth the one-off initial outlay of SMATV receiving equipment. Particularly so bearing in mind that the four BBC and IBA channels are already receivable 'off-air, anyway, and that DBS receiving equipment is not going to be cheap.

Sothe Government has soon to put its cards on the table and decide how best to optimise the possible services. The decision is not easy, and becomes more difficult as time creeps by. Ideally, the decision should have been reached years ago. We might all have had improved television services now if it had.

Meanwhile, one of the main reasons for even considering satellite television systems over ordinary terrestrial television that of stereo sound - appears to have been knocked down by BBC engineers.

Using a digital coding system, a stereo signal may be transmitted alongside the existing signal so that television receivers equipped with suitable decoding circuitry can provide high quality stereo sound. The system is fully compatible with existing mono television receivers and the BBC says that stereo transmissions could begin as early as 1987.

Do we really need cable or satellite television systems?

Keith Brindley

MDEX disc O/S + BASIC
MDEX Professional Dev. Sys.
CORTEX POWER-BASIC disc $£ 275$
Isc extensions
MDEX Extensions
Editor
E35
Relocating Assembler/linker 235
FORTH - screen editor, assembler - graphics - better than BASIC

PASCAL - by Pre Brinch Hansen £55

QBASIC - fast BASIC compiler c35

UCSD Pascal, SPL, META, WINDOW, SPELL
$\Sigma 150$

CORTEX tape software

Pengo - fast machine code action
Golf - excellent animation
$£ 6$
Micropede - rampant caterpillar ${ }^{2} 6$
Space Bugs, Pontoon, Breakout
each ${ }^{2} 6$
Cassette/CDOS word processor
£13
Add $£ 2$ for software on CDOS disc

Disec Drives

80 track double-sided double-density
40 track single-sided double density
$£ 190$
E-BUS Floppy/Winchester Controller
E-BUS 64/128 Kbytes DRAM card
$\Sigma 120$

E-BUS Joystick * centronics blakcboard £145/£245
£13
80*24 Character video blank card
£48
State disc format and add VAT to all prices

WE MANUFACTURER BEAUTIFUL ENCLOSURES At prices you will find difficull to beat.
Alloy boxes from 80p to rack mounted units from $\mathrm{E15}$ and a host of ranges and sizes in between. Well made - well finished - and all Britist. Send large SAE for catalogue which includes $£ 5$ in voucners.

TRAINS OF THOUGHT

If you have ever visited a signalbox (or tower as they call them in North America) you may well have been impressed bythe mimic diagrams in which white lights indicate routes that have been set up for approaching trains; these then change automatically to red as the train enters the section of track being represented. Many railway modellers have been captivated and not a few now employ these on their own layouts.

The white lights pose few problems. The real difficulty is how to obtain reliable information as to the present whereabouts of the trains - how does the system know when to change the white lights to red?

Traditionally railway modellers have resorted to non-electronic techniques such as the use of relays. One method is to isolate a very short length of rail at the entry toa section and arrange that when train wheels bridge the gaps they complete the circuit of a latching relay. At the start of the next section a similar arrangement applies and the latching of the second relay cancels the first. Spare relay contacts abound for mimic diagrams, automatic signalling and accessory operation. All very straightforward but costly and also, by virtue of its dependence on 'dead' sections of track, it is not conducive to the smooth running of trains.

Two electronic methods of train detection are now rival claimants for the attention of railway modellers - and neither conflicts with smooth running.

Method number 1 is an electronic counterpart to the latching relay. Each section uses a bistable latch. Each latch may consist of a pair of TTL NAND gates or even, as with one layout I visited recently, pairs of BFY51 transistors with oodles of collector current capacity for mimic diagram or signal lamps. Inputs to these bistables are mostoften from track-mounted reed switches activated by trainborne magnets, less often from 'dead' rail lengths (as with the relay system) or from LDRs shaded by passing trains.

Typical return-rail bidirectional track circuit delivering TTL-compatible logic low when section of track is occupied.

This kind of system suffers from three major shortcomings. (1) Model railways are of necessity an electrically noisy environment and unless great care is taken any bistable is likely to suffer from spurious setting and resetting. (2) At switch-on the latch may settle in the untrue state. (3) The system in its simplest form only works for one-way traffic; it can be modified for two-way traffic by doubling the number of detectors.

Method number 2 emulates the practice of track circuiting on British Rail by monitoring the electrical continuity of a section of line. Practice is to monitor the current flowing into the section from the controller (throttle) but leaving a trickle from an auxiliary supply to keep the detector going when the controller is off or at a stop. Most often the detector takes the form of a pair of smallsignal NPN transistors in reverse parallel monitoring the voltage drop across a reverse parallel pair of rectifiers and transistors by using small power transistors such as the BD4 37 (see figure).

A fascinating aspect of this bit of circuitry is that it uses the transistor as a'fractiona-gain amplifier', since the base bias may be as high as 1 A while collector current is less than 1 mA ! Numerous variations on this theme are in use and generally the system gives consistently accurate train detection without any problems other than a0.7V'diode drop' between controlier and train. On myown layout the track circuit units monitor the live and return rails alternately with 'overlap zones' between sections to allow for the length of
the train - since only the locomotives are detected.

This kind of reliable bidirectional train detection system with its TTL-compatible output opens the door to exciting possibilities
ranging from simple TTL-based automatic signalling to mindboggling computer-linked train control systems - of which more in later issues.

Roger Amos

'black box' between the one-inch master and each VCR slave. When played back through an ordinary VCR and television or monitor, the noise should be removed by the sync separator circuitry, without detrimental effect. On trying to record from such a noise-treated signal, however, video AGC stages (which come before sync separation) will read false signal levels. VideoAGC stages usuallyemploy a combination of keyed (or line gated) and peak detection methods. Both of these may be 'confused' by noise on the line sync pulse itself or, with the keyed method, noise on the back porch of the pulse. Suitable AGC stages are to be found in the tuner-IF stages of a TV and in the record-mode videoamplification stage of a VCR - which means the noise would be effective for baseband or VHF routed signals. If my guess is correct, the result of introducing noise into the line sync pulse before it reaches an AGC should be 'dim and noisy' pictures on the tape as the record level decreases when it shouldn't and increases when it's unnecessary.

All this is guess work inevitably, since Macrovision are, not surprisingly, reluctant to reveal precise information. They claim that their process maintains ' 100% playability and integrity of the original cassette, disk or other video source' - a claim which has not been substantiated with other, earlier, spoiler processes. They only hire out the necessary black boxes to duplicators on a royalty basis. Inventor John Ryan admits that his system could be circumvented by crafty professionals, but that it was designed primarily to prevent casual home-taping. While I'm aware that home-taping may be illegal and unethical, l'd be interested to hear ETI readers' views on the Macrovision process. After all, anti-piracy has to be better than the best pirates!

I had intended not to mention Sìr Clive Sinclair this month, but I guess the habit's become to strong to resist. Amidst all the rumours of the impending collapse of Sinclair Vehicles and the recent critical performance of Sinclair Research (two companies which are totally distinct!), the financial press seem set on perpetuating myths. For the n-th time, I read in a recent Sunday Times that Sinclair introduced the first pocket calculator in 1972. Sometimes, he even seems to have invented it. This is odd, since I seem to remember Texas

Instruments doing something of the sort in 1968, and it's rather like describing Freddie Laker as the inventor of the jet engine. Indeed, the Sunday Times goes on to comment that Sinclair 'has been described as the Freddie Laker of electronics.' Quite who made this perceptive comparison is not quite clear, but the two men do seem to have a great deal in common - their knighthoods being perhaps the least of it. The Sunday Times alsc claims that Sinclair introduced his matchbox radio in 1974, which doesn't square with my memory of having bought one in 1971 or thereabouts. The Observer, meanwhile, agrees with its competitor that Sir Clive is no businessman, recommending that he get out of the boardrocm 'and back into the laboratory'. The great man, it appears, has 'tremendous contributions to make' in the field of micro-chip technology. I for one would be more confident that this was a well-considered proposal if plain old Clive (as he then was) hadn't once told me that he had no interest whatsoever in computers.

The fact that the Standard Ohm at the International Bureau
of Standards in Paris is not all it's cracked up to be may have some disturbing implications. Evidently, recent measurements show that the Ohm is actually only worth 0.99999999851 ohms. Now, this may simply be the result of inflation - youknow the sort of thing, a banner headline in the Financial Times: 'Ohm Falls Against Volt - An Electric Shock!'. But the question is, how long has it been going on? If the Standard Second is equally inaccurate, we may neverknow and it could be that Ohm's law is not only wrong but unenforceable. I think we should be told...

Among the mountain of press releases that I'm fortunate enough to have to wade through every day there is little in the way of light relief. I was, therefore, pleased to come across the announcement of the publication of a new' data directory' from ERL Technical Books recently. The directory, which answers to the name 'tht', is - according to the press release - 'comprehensive', covering 'all types of thyristory and triacs.' I am driven to a conclusion that Henry Ford once very nearly reached. Thyristory is bunk....

ELECTRONICS TODAY INTERNATIONAL

Linpage:
40p per word (minimum 15 words)' Semi Display: (minimum 2 cms) £14.00 per single column centimetre
Ring for information on series bookings/discounts All advertisements in this section must be prepaid. Advertisements are accepted subject to the terms and
conditions printed on the advertisement rate card (available on request)

$01-4370699$

Send your requirements to: Caroline Faulkner ASP Ltd. 1 Golden Square, London W1.

\mathbf{E}
\mathbf{E}
\mathbf{E}
\mathbf{C}
\mathbf{T}
\mathbf{R}
\mathbf{O}
\mathbf{M}
\mathbf{A}
\mathbf{R}
\mathbf{T}

56 Fleet Rood, Benfleet, Essex SS7 5JN 037453381 or 037453256 for full details
EPROM COPIER - STAND ALONE
EPROM COPIER - STAND ALONE
2718-27128........... \&175.00
2718-27128........... \&175.00
TELEPHONE CONVERSATION
TELEPHONE CONVERSATION
RECORDER \&75.00
RECORDER \&75.00
2 LINES INTO 1 ANSWERING
2 LINES INTO 1 ANSWERING
MACHINE
MACHINE
Switching Unil \&30.00
Switching Unil \&30.00
From LK.F. Syatemen Lid
From LK.F. Syatemen Lid
84. Albane. Tol: 55084
84. Albane. Tol: 55084

USEDTESTEOUIPMENTII

ELANSHE EDITNG PROGRAMMEREASO ELANS40EDITING PROGRAMMERESSO GP 4000 GANG PAOGRAMMER E200
AAB Electronice, stonebridop Mills,
Stonebidde Lane, Wortey,
Leet: $0532-632131$

COMPUTER ADD-ONS

EXTERNAL VIDEO BOARD for the CORTEX and other computers using the TMS9929 V.D.P. Fully synchronlses the computer to a video fed from camera or V.T.R. Produces a combined picture at the outputs. Unpopulated P.C.B. circutis and detalls - £30.00. Fully builf ع100.00. Tim Gray, 1, Larkspur Drlve, Featherstone, Wolverhampton, West Mids. WV10 7TN.
** TANGERINE OWNER8 *** 6809 CPU board, Flex O/S, 14K RAM card overlay Tanex, 32K-RAM-EPROM-BATTERY BACKED BOARD address switchable page selectable all available from STOCK also all the hard to get Tangerine chips in stock, loads of FLEX programmes, power supplies, Access/Barclaycard, s.a.e. fordetails. Ralph Allen Engineering, Forncette-End, Norwich, NR16 1HT. Tel: 095389420.

MICROCOMPUTER

 REPAIRSZX8PECTRUM.VIC20,C64, BBC, QL 15 40/41, Commodore computers, printers and floppy discs. Send faulty machine to: Trident Enterprises Ltd., 37 Linden House, Common Road, Langley, Slough, Berks. Tel: (0753) 48785.

13a Station Road
Cullercoats - North Shields
Tyne \& Wear - NE30 4PQ
Telephone 0912514363

CONQUER THE CHIP . . .Master modern electronis the PRACTICAL'way by SEEING and DOING in your own home. Write for your free colour brochure, now to: British National Radio \& Electronics School. P.O. Box 7 Teignmouth, Devon TQ14 OHS.

WANTED

TURN YOUR SURPLUS transistors, IC's etc into cash. Contact Cóles Harding \& Co., 103 South Brink Wisbech, Cambs. Tel: 0945584188 . Immediate settlement.

ESR 13a Station Road Culiercoats - North Shields Telephone 0912514363

TRANSISTORS - RESISTORS - CAPACITORS DIODES - LED'S - SCR'S - ICS - VOLTAGE REGULATORS - DISPLAYS - AUDIO \& EDGE CONNECTORS - VERO/PCB'S - INSTRUMENT MODULES - MICROPHONES \& STANDS.

WRITE OR PHONE FOR FREE PRICE LIST.

PRE-AMPS
MISCELLANEOUS

ROSIN CORED SOLDER. Half kllo £7.50. Post paid. Matthew Grant, Brantimpin, Saint Anns, Lockerbie, Dumfrieshire DG11 IHL.

HEATHKIT U.K. Spares and service centre. Cedar Electronics Unlt 12, Station Drive, Bredon Tewksbury, Glous. Tel: 0684 73127.

PRINTEDCIRCUITS Make your own simply, cheaply and quickly! Golden Fotolac light-sensitive laquer - now greatly improved and very much faster. Aerosol cans with full instructions, $\mathbf{\Sigma 2} .50$. Developer 35p. Ferric Chloride 60p. Clear acetate sheet for master 15 p . Copper-clad fibreglass board, approx. 1 mm thick £2.00 sq. ft. Post/packing 75p. White House Electronics, Castle Drive, Praa Sands, Penzance, Cornwall.

J. Linsley Hood Designs Distortion Analyser kt E25.00 (pap ع1) Millivoltmeter kit $\mathbf{\Sigma 1 2 . 2 5 (p \& p 7 5 p)}$ Case \& Panelfor above $\varepsilon 12.00$ (pAp $\varepsilon 1$) ETI Mosfet P.A. kit $\quad \mathbf{S 1 . 0 0}$ (p\&p $\mathbf{~ 1 1 . 5 0) ~}$ Audio Signal Gen. (. 02\%) 28.50 (p\&p $£ 1.50$)
 Audio Signal Gen. (002\%)
 E38.80 (p\& 82.00)
 Fixed trequency Gen. $£ 11.00$ (pAp 50p) Reo. P.S.U. $1.5 / 35$ volts
 from 812.80 (p\&p 75p) SAE for tull information Teleradio Electronice Fore 8L, London N19 OPE Tet: 01-2073710

MINIATURE TRANSMITTER, transmits all voices and sounds to any VHF/FM radio up to 5 miles away, size 2 in $x 1 / 2$ in, tunable $70-$ 150 MHz complete kit, including sensitive microphone, $£ 4.95$ send cash/cheque/PO: Tectroniks, 22 Lambardes N.A.G., Nr. Dartiord Kent DA3 8HX. Mail order only.

MINIATURE FM TRANSMIT. TER8. Frequency $60-145 \mathrm{MHz}$, range $1 / 2$ mile S.G.F. - P.C.B. All components. Full instructions 9 12v operation, broadcast reception. Super sensitive microphone. Plick-up on FM radio. £6.95 Inc; or ready built £8.95: Same day despatch - Zenith Electronics, 21 Station Rd., Industrial Estate, Hailsham, E. Sussex BN27 2EW.

PRINTED CIRCUIT BOARDS AND PLANS TO BUILD: Headlight activated switches, timers, metronomes, sirens etc. Two ready dillied boards $£ 2.85$ p\&p 50 p . Send to: Chataignes Product, Green Lane, Great Horkesley, Colchester; Essex, C06 4HO.

ELECTRONIC ORGAN KEYBOARDS and other parts being cleared out as special offer. Elvins Electronic Musical Instruments, 40A Daiston Lane, London E8. 01-986 8455.

PLANS 'N DESIGN

AMAZING ELECTRONIC plans, lasers, gas, ruby, light shows, high voltage teslas, van de graph surveillance devices, ultrasonics, pyrotechnics, now solar generator, 150 more projects, catalogue. S.A.E. Plancentre, Old String Works, Bye Street, Ledbury HR8 2AA.

IRISH READERS

MAIL ORDER COMPONENTS
Top quality components Great prices
Return-of-post service
Write or phone for free price list
WAVEFORM ELECTRONICS
12 Effre Road, Rathmines, Dublin 6. Phone(01) 0001 if England 987507 Mail order only please

HUNT ELECTRONICS 1985 COMPONENTS CATALOGUE. send 50p in stamps. Refunded with first order, to P.O. 57, Derby, DE6 6SN. Tel: (0283) 703071.

NI-CAD BATTERIES. AA, 500 MAH £1.00. C 1200 MAH E2.00. D 1200 MAH £2.20. PP3 110 MAH £4.80. P\&P 40p. Free price list! Spectrum Radio \& Electronics, 36 Slater St., Liverpool L1 4BX. 051 -709-4628.

64K D RAM 150 Ms 玉 3.50 , from unfinished project. Any quantity 50p P\&P. T. Stiemerling, 38 Cowper Rd., Bristol BS6 6NZ. Tel: 744 824. Only after 6pm.

RESISTORS, CAPACIOTORS. 1,000 mixed carbon film $1 / W$ W, $1 / 4$ W, $112 W, 2 \%, 5 \%, 10 \%$ resistors $£ 2.95$ +50 p P\&P. SAE for details to: D.J. Hooker, Romney Marsh Electronics, Clark Road, Greatstone, Romney Marsh, Kent, TN28 8PB.

WIRES 'N CABLES

100W AMPLIFIER - $£ 9.95$ bullt or use the same board for 50W, $150 \mathrm{~W}, 200 \mathrm{~W}$ into 4 or 8 ohms, etc., by using alternative output transistors and P.S.U. S.A.E. for full details to:- ESS Amplification, 269 Hessle Road, Hull.

KIA RETURN AN AD. No 20 quality FET 100 watt fibreglass to 3 poweramp module + relay protection . . . return ad + E10.00 - 8 Cunliffe Rd., Ilkley.

TECHTRONICS OSCILLO. SCOPES 556 Dual Beam four trace 50 MHz . Delay Sweep E395 547 Dual trace 50 MHz Delay Sweep display - switching $£ 250$ 581A Dual trace 85 MHZ £1.95. 545A dual trace 24 MHz Delay Sweep £135. A.F. Spectrum analyser system E225. Storage oscilloscopes, curve - tracers, manuals, plug-ins, spares. NOVA 3 minicomputa. Other test equipment. Tel: 01-868 4221.

STEREOAMPS 120 WATT $(60+60)$... Case - J.I.N. sockets and controls...9-40V/Smoothing protected outputs 3/15 O.H.M. tested and dlagrams £10/ inc . . . KIA-8 Cunlifle Rd., Ilkley.

FLOPPY DIDRIVE8: Micropolis 51/4" 1071, S100 Controiler, Software 8" Siemens FDD 120-8, Shugart 800-2, All $£ 95$ EA. ONO. 06513-2553.

OSCILLOSCOPE - Heath Model OS2 perfect working order, uncalibrated controls, very compact £36. Bob. 01-441-1050. Daytime.

SHEETMETAL FOLDERS. $24^{\prime \prime} \times$
$166^{\prime \prime}$ vice or bench model E50 leaflet 01-890-7838 day/eves.

PARAPHYSICS JOURNAL (Russian translation); psychotronics, kirlianography, heliphonic music, telekinetics. Computer software. S.A.E. 4×9 ", Paralab, Downton. Wiltshire.

ADAPTORS

TELETEXT
(Ceefax/Oracie) external adaptors fit any television free cordless remote control. E159.95 inc. VAT and delivery. Access/Visa. Nufax Ltd., Freepost, Bristol BS6 7YZ. Tel: Bristol (0272) 687801744500.
P.C.B.'s manufactured to your specification. Small/Large production. FAST PROTOTYPE SERVICE. Photography. Sensitised Laminate Supplied, U.V. Exposure Equipment from manufacturer. ORBITECHNIC, 38 Torquay Gardens, Redbridge, Essex. 01-5503610.

PCB DESIGN \& LAYOUT. Taped artworks to your specifications and requirements. TRAX Limited, 497 Hitchin Road, Luton, Beds.

FREE PROTOTYPE of the finest quality with every P.C.B. artwork designed by us. Competitive hourly rates, and high standard of work Halstead Designs Limited. Tel: halstead (0787) 477408.

ETI. VCDO authentic musical instruments in EPROM E9.95. O. Lucas, 45 Fotherby Ct., Maldenhead, Berks SL6 1SU.

PCB DESIGNs and layout. Contact: Elpincrest Ltd., 46 Argyle St., London N18 2PP. Tel: 01-8079276.

JBA ELECTRONICS

Specialists in manufacture and design of:
Microprocessor, Telemetry, and Audio-based systems.

UNIT 1,
BRECON INDUSTRIAL EBTATE,
BRECON, POWY8, S. WALE8
Tet. (0874) 5944

SCOPES

Repaired \& recalibrated, all makes all models.
Scopex Safgan Older TEK TQ MENDASCOPE LTD Otter House
Western Underwood, OIney Bucks MK46 5JS
Tel: Bedford (0234) 712445
P.C.B. DESIGN : LAYOUT, manuaily taped sitwork professionally produced at competitive prices. James Gledhill. Tel: 01-674-8511.

POWER SUPPLIES

CLAIRTRONIC 3-Pin Plug AC Power Units. 240/12V at 400 mA rms. 2-Metre Jack Lead. In-bullt Thermal Fuse. Price £3.65. P\&P \& VAT Included. CLAIRTRONIC LTD, Churchfield Road, Chalfont St. Peter, Bucks. SL9 9EP.

REPAIRS

POWER SUPPLY REPAIRS. We offer a fast repair service on most makers of DC power units in the range of 1 amp to 30 amps. Crow bars etc, also fitted. Fuil details ring: 0536743488.

ALARMS

SERVICES

QUANTUM TECHNOLOGY PRODUCTS
 From

Airwave Communication Ltd. Manufactures to your design, specification or brief. From bare boards to systems. One offs, prototypes and small batch runs. Projects, Repairs, P.C.B. Service
S.A.E. or Phone for details. NO JOB SMALL $\begin{gathered}\text { Sirwave Communication Lid., } \\ \text { Lisandra House, } \\ \text { Fore Street, East Loe, } \\ \text { Cornwall PL13 1AD. } \\ \text { (05036) 4739 or } 3407\end{gathered}$ (05036) 4739 or 3407

LOWESTPRICED TOP QUALITY fire and intruder alarm equipment, etc. S.A.E. for catalogue. Security Services, 162 High St., Hythe, Kent CT21 5JR.

BOOKS \& PUBS.

HACKER'SI LIST THE UNLISTED. A GUIDE FOR THE novice, trace unllisted computer phonenumbers, auto-dialler information, log-on, Networks, telephone medlum, legal notes. £6.75. Andersons Computer Services, 56 Waterloo Road, Freemantle, Southampton.

. . . with ETTI. CLASSIFIED...

BOOKS

THE ART OF MICRO DESIGN by A. A. Berk
£14.95
PRACTICAL DESIGN OF
DIGITAL CIRCUITS
by lan K cire
INTERACING TO MICRO'S
AND MICROCOMPUTERS
ANO Owen Bishop $£ 6.75$
PRACTICAL ELECTRONICS
HANDBOOK
by lan Sinclair
FOUNDATIONS OF
WIRELESS AND
ELECTRONICS 10th Edition
by M. G. Scroggle
any more titles available
SAE for illustrated catalogue and FREE MEMBERSHIP of our EXCHANGE BOOK CLUB
JAMES ELECTRONICS (ETI) PO Box 2, Rothwell, Leeds LS26 OUY

WHO NEEDS A LOGIC ANALYSER? Illustrated guide shows you how to decode microprocesses Buft signals using a standard oscilloscope. Price $£ 4.99+$ 40p P\&P. Crossed cheques/P.O.'s to:- Mr M Rimmer 20, Duddie Lane, Walton-le-Dale, Preston, Lancs PR5 4UD.

PHONE

 YOUR REQUIREMENTS TO CAROLINE 01-437 0699 Ext 323

__ ATTENTION: ALL CLASSIFIED ADVERTISEMENTS MUST NOW CARRY 15\% VAT

MAIL ORDER ADVERTISING

British Code of Advertising Practice
advertisements in this publication are required to CONFORM TO THE BRITISH CODE OF ADVERTISING PRACTICE. IN RESPECT OF MAIL ORDER ADVERTISEMENTS WHERE MONEY IS PAID IN ADVANCE, THE CODE REQUIRES ADVERTISERS TO FULFIL ORDERS WITHIN 28 DAYS. UNLESS A LONGER DELIVERY PERIOD IS STATED. WHE RE GOOOS ARE RETURNED UNOAMAGED WITHIN SEVEN OAYS. THE PIJRCHASER'S MONEY MUST BE REFUNDEO PLEASE RETAIN PROOF OF
POSTAGE/DESPATCH, AS THIS MAY BE NEEDED

Mail Order Protection Scheme

If you order goods from Mall Order advertisements in this magazine and pay by post in advance of dehvery will consider you for compensation if the Advertiser should become insolvent or bankrupt, provided

1. You have not received the goods or had your money returned: and
2. You write to the Publisher of this
publication: summarising the situation not earlier than 28 days from the day
you sent your order and not later than two months from that day.
Please do not wait until the last moment to inform us. When you write, we will tell you how to make your claim and what evidence of payment is required.
We guarantee to meet claims from readers made in accordance with the above procedure as soon as possible after the Advertiser has been declared bankrupt or insolvent lup to a limit of $£ 2,000$ per annum for any one Advertiser so affected and up to $£ 6.000$ per annum in respect of all insolvent Advertisers. Claims may be paid for higher amounts, or when the above procedure has not been complied with. at the discretion of this publication. but we do not guarantee to do so in view of the need to set some limit to this commitment and to learn quickly of readers' difficulties.)
This guarantee covers only advance payment sent in direct response to an advertisement in this magazine (not, for example, payment made in response to catalogues etc received as a resulf of answering such advertisements) Classified advertisements are excluded

Its easy to complain about an advertisement. Once you know how.

One of the ways we keep a check on the advertising that appears in the press, on posters and in the cinema is by responding to consumers' complaints.

Any complaint sent to us is considered carefully and, if there's a case to answer, a full investigation is made.

If you think you've got good reason to complain about an advertisement, send off for a copy of our free leaflet.

It will tell you all you need to know to help us process your complaint as quickly as possible.

The Advertising Standards Authority. If an advertisement is wrong, were here to put it right. ASA Ltd, Dept 1 Brook House,
Torrington Place, LondonWC1E 7HN

world-wide reputation for qualiiv, reliability and pe available to suit the needs of the professional Instrumental and Hi -Fi etc. When comparing prich power supply, Integral heat sink, Glass fibre PC. Vu meter. Open and short circuit proof. Supp		PIEZO ELECTRIC TWEETERS - MOTOROLA Join the Piezo revolution. The low dynamic mass (no voice coil) of a Piezo tweeter produces an improved transient response with a lower distortion level than ordinary dynamic tweeters. As a crossover is not required these Units can be added to existing speaker systems of up 10100 walts Imore it 2 put in series). FREE EXPLANATORY LEAFLETS SUPPLIED WITH EACH TWEETER TWEETER PEAKERS Cabinet fixS. A. E. for details. M.S. Hi-Fi/Oisca. B PRICE 10 coil. Ground ally fixing esculcheon. Res. Freq 40 Hz . Freq Resp to R.M.S. Hi.Fi/Oiscolable with black grille 〔11.99 P\&P \& 1.50 ea. R.M.S. Hi - Fi/Oisco ally voice coil. Ground ally fixing escutcheon. Die cast chassis. White cone. Res R 104 KHz Sens 95dB. PRICE $\mathbb{C 2 8 . 6 0}+\mathbb{C} 3.00 \mathrm{P} \& \mathrm{P}$ ea R.M.S. Hi-Fi/Disco ally voice soll Ground ally lixing esculcheon, Die-cast chassis White cone Res Resp to 2.5 KHz . Sens 97 dB . PRICE $£ 37.49,\{3.00 \mathrm{P} \mathrm{\& P}$ ea Il Range Twin Cone) M.S. Hi-Fi/Mulilple Array Disco etc. 5. Freq. 63 Hz . Freq. Resp to 20 KHz . Sens. 86dB PRICE 69.99 + 1.00 P\&P ea. .M.S. Hi.Fi/Multiple Array Dlsco etc. Freq. 56 Hz Freq. Resp. to 20 KHz . Sens. 89dB. PRICE $1099+61.50$ P\&P ea M.S. Hi-Fi/Muliple Array Dlsco etc les Freq. 38 Hz Freq Resp. to 20 KHz Sens. 89 d 8 PRICE $\mathcal{E} 12.99+$ E1.50 P\&P ea M.S. C1285GP Lead quitar/keyboard/Oisco. Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. to 6.5 KHz . Sens. 98 dB . PRICE 624.99 M.S. C1285TC P.A. Olsco $2^{\prime \prime}$ ally voice coll. Twin cone. Freq Resp to 14 KHz PRICE $\mathrm{C} 24.99+\mathrm{C} 3.00 \mathrm{P} \mathrm{\&}$ \& ea R.M.S.C15 Bass Guitar/Oisco. s include VAT. Sales Counter.	
OMP $100 \mathrm{Mk} \\| \mathrm{Amp}$. Module. 110 wR .M.S. 4 ohms. VP Sens. 5 Size: $360 \times 115 \times 72 \mathrm{~mm}$. Price: $\mathbf{1 3 2 . 9 9 + 6 2 . 5 0 \mathrm { P } 8 \mathrm { P }}$ OMP/MF100 Mos.Fet. Very high spec. 110 w.M. S. both $4 \&$ Boh 500 mV - 10 K . Slize: $300 \times 123 \times 60 \mathrm{~mm}$. Price: $£ 39.99+£ 2.50$ OMP/MF200 Mos-Fet. Very high spec. 200w R. M. S OMP/MF300 Mos.Fet OMPK Vu Meter. 11 LEO's. Plastic Case. Size: $84 \times 27 \times 45 \mathrm{~mm}$. Price: $\mathbf{C 8}$.			
	LOUDSPEAKERS Cabmet fix ing in slock details. POWER RANGE 8. 50 WATT R.M.S. Hi-Fi/ Oisca. 20 oz, magnet $1 / 2^{\prime \prime}$ ally voice cori. Ground ally fixing escuicheon. Res. Frea 40 Hz . Freg Resp to 6 KHz . Sens 92 dB PRICE 10.99 Avallable with black grille 611.99 P\&PP 11.50 ва $12^{\prime \prime} 100$ WATT R.M.S. Hi-Fi/Disco 50 oz magnet $2^{\prime \prime}$ ally voice coil. Ground ally fixing escurcheon. Oie-cast chassis. White cone. Res ${ }^{2} \mathrm{~F}$ eq 15^{5}. Freq. Resp. 104 KHz Sens 95dB. PRICE $\subset 28.60+¢ 3.00$ P\&P ea 15100 WATT R.M.S. Hi.Fi/Disco ${ }^{\text {Freq. } 20 \mathrm{~Hz} \text {. Freq. Resp to }} \mathbf{2} 2.5 \mathrm{KHz}$. Sens 97 dB . PRICE $£ 37.49$, $63.00 \mathrm{P} \& \mathrm{P}$ ea. SOUNDLAB (Full Range Twin Cons) 60 WATT R.M.S. Hi-Fi/Muitiple Array Disco etc. 60 WATT R.M.S. Hi.Fi/Multiple Array Dlsco elc. oice coit. Res. Freq. 56 Hz Freq. Resp. 1020 kHz . Sens. 89dB. PRICE $\ell 1099+£ 1.50 \mathrm{P} \mathrm{\& P}$ ea 60 WATT R.M.S. Hi-Fi/Multipte Array Dlsco ete. voice coll. Res Freq. 38 Hz . Freq. Resp. to 20 KHz Sens. 89 d 8 PRICE $£ 12.99+£ 1.50 \mathrm{P} 8 \mathrm{P}$ ea McKENZIE 12" B5 WATT R.M.S. C1285GP Lead guitar/kevboard/OIsco ally voice coil Ally centre dome. Res. Freq. 45 Hz . Freq. Resp. 106.5 KHz Sens. 98 dB . Price $\mathbf{6 2 4 . 9 9}$ 85 WATT R.M.S. C1285TC PA. Olsco 2" ally voice coll. Twin cone Freq 45 Hz Freq Resp 1014 KHz PRICE $\ell 24.99+\ell 3.00 \mathrm{P} \& \mathrm{P}$ ea 150 WATT R.M.S C15 Bass Guitat /Oisco All prices include VAT. Sales Counter.		
STEREO DISCO MIXER with 2×5 band L \& L.E.D. Vu Meters. Many outstanding features 5 Inputs with individual faders providing a 3 useful combination of the following:- $-\quad$ Turnables (Mag). 3 Mics, 4 Line plus Mic with talk over switch. Headphone Monitor put 775 mV . Size $360 \times 280 \times 90 \mathrm{~mm}$			
" 150 WATT R.M.S. C15 Bass Guitar/Oisco. \#SAE for current lists. \# Official orders welcome. *All prices include VAT. \#Sales Counter.			
		ET WAY: SOUTHEND.ON.SE 2 6TR TEL O702-527572	

Please call or write SME Limited, Steyning, Sussex, BN4 3GY Telephone: 0903814321 Telex: 877808 G

ETI Advertisers Index July 1985

Audio Electronics 12/66
BK Electronics 66
BNRES 27
Cambridge Microprocessor Systems 22
Cricklewood 57
Cybernetic Applications 12
Display 26
Electrovalue 26
ETI Book Service 10
Flight Electronics IBC
Greenbank 60
Henry's Audio 12
ICS 57
ILP 27
Maplin OBC
Microprocessor Eng. Ltd. 59
Newrad 59
Powertran IFC
Rapid 6
SME. 66
Stewarts of Reading 29
Technocrown 60
TK Electronics. 27
Watford Electronics 4/5

> The NEW educational product range from Flight Electronics Ltd, all of which may also be used as low cost development systems for engineers working on low budgets.

1 DT-01 Digital Trainer

For breadboarding, digital circuits, flip-flops and monostable multivibrators, counters, encoders, decoders, multiplexers, demultiplexers and sequencers, registers, LED and 7 SEGMENTS LED displays,memory devices, etc.

SPECIFICATION

AC ADAPTOR JACK: I/P DC $+12 \mathrm{~V}, 800 \mathrm{~mA}$
OOWER SW: AC ADAPTOR
BATEERY, $1.5 \mathrm{~V} \times 4$
PULSE SW: Two bounce-free pushbuttons.
LOGIC SW: Eight logic level switches in DIP type DC 0/P: DC $+5 \mathrm{~V}, 750 \mathrm{~mA}$ for user.
B-023 BREADBOARD: Solderless breadboard with 1580 interconnected tie points. CLIP TERMINAL: Logic probe clíp terminal.
BATTERY HOLDER: $1.5 \mathrm{~V} \times 4$.
LED DISPLAY: Eight LED buffered logic level indicators. BNC JACKS
SELECT SW: Clock range selection.
LOW $10-40 \mathrm{HZ}$
HIGH: $1 \mathrm{~K}-20 \mathrm{KHZ}$
BANANA JACKS.
CLOCK ADJ: Fine adj. of clock frequency
Includes Logic Probe

2 MPF-1/88
SPECIFICATION
MICROPROCESSOR: 16 bit CPU, Intel $8088,4.77 \mathrm{MHz}$ version with an 8 -bit data bus. RAM MEMORY: 4 K standard RAM on two 2 K byte RAM chips Expandable to 24 K by using three 8 K byte RAM chips ROM MEMORY: 16K standard ROM on two 8 K byte ROM chips. Expandable to 48 K by using three 16 K byte ROM chips.
ROM memory contains program code for the monitor, line assembler, and disassembler. DISPLAY SCREEN: 20 character $\times 2$ line LCD display shows any 2 lines of a 20 character $\times 24$ line logical screen. KEYBOARD: 59-key, full-size QWERTY keyboard PRINTER INTERFACE Centronics standard parallel interface with 16 -pin connector CASSEITE INTERFACE: Can be used with any monaural cassette recorder
RECORDING SPEED: $1000-2000$ bits/second.
BUS CONNECTOR: 62-pin IBM
NLIM
MPF-1/88

3 MPF-1/65

SPECIFICATION

ADVANCED INTERACTIVE MONITOR: The heart of the MPF 1/65 software resides in 16 K bytes of ROM.
DISASSEMBLER: The built-in disassembler allows the user to list 6502 microprocessor instructions on both printer and video display.
SCREEN EDITOR
TEXT EDITOR.
TWO PASS ASSEMBLER PRINTER DRIVER
DEBUGGING FEATURES
INPUTS AND OUTPUTS
AUDIO SPEAKER.
AUDIO CASSETTE INTERFACE 1000-Baud
PARALLEL PRINTER INTERFACE Centronics/EPSOM
VIDEO MONITOR INTERFACE COLOUR TV INTERFACE SYSTEM EXPANSION CONNECTOR: 50 pin connector to provide interface with RS. 232c or ROM cantridges. KEYBOARD: Standard calculator 49 key keyboard with 153 ASCII codes.
PROFESSIONAL
DOCUMENTATION: User's Manual and Monitor Source Code Listing Manual are standard.

4 MPF.1P

SPECIFICATION

Z80 CPU high performance microprocessor with 158 instructions.
4K RAM, Battery Back-up circuits provided for the user to keep the contents of the RAMs. 8 K ROM, sophisticated monitor expandable to 16 K .
8 K of sophisticated monitor including text editor, two pass assembler, line assembler, brea point, system initialization, keyboard scan, display scan tape write and tape read register and memory modification, insert, delete move relation, fill and step execution
20 digits, 14 -segment green phospherescent display 49-key alphanumeric keyboard including editing and functional keys.
Audio cassette interface: 165 baud average rate for data transter between memory and cassette
Extension connectors: all CPU buses usable for expansion $2.25^{\prime \prime}$ diameter speaker. 9V, 1.0A adaptor provided. Three complete self-learning textbooks with experiments and applicatıons.

5 MPF-1B

SPECIFICATION

CPU: $\mathbf{Z 8 0}$ CPU high performance microprocessor with 158 instructions.
RAM: 2 K bytes expandable to 4 K bytes.
ROM: 2 K bytes of sophisticated monitor expandable to 8 K bytes. INPUT/OUTPUT: 24 system I/O lines.
MONITOR: 2 K bytes of sophisticated monitor. Monitor includes system initialization. keyboard scan, display scan, tape write and tape read. DISPLAY: 6-digit, 0.5" red LED display
AUDIO CASSETTE INTERFACE 165-Baud
EXPANSION FACILITY
Z80-P10 16 uncommitted lines. Z80-CTC 4 uncommitted timer channels.
USER AREA: Provides a $3.5^{\prime \prime} \times$ $1.36^{\prime \prime}$ wire wrapping area for user's expansion.
POWER REQUIREMENT: 9V, 1.0A adaptor is provideo. KEYBOARD: 36 keys including 19 function keys, 16 hex digit keys, and I user-defined key.

FLIGHT ELECTRONICS LTD

More This Month at Maplin

256K D-RAM 41256-150ns ONLY £9.95 (QY74R).
256K EPROM 27256-250ns ONLY $£ 18.95$ (QY75S)
Right-angle pcb mounting rotary switches 1P12W-FT56L 2P6W-FT57M; 3P4WFT58N: 4P3W - FT59P. All $£ 2.95$ each. Stepper motor 48 steps/rev, 12V 0.13 A per phase, 4-phase unipolar, 57 g , working torque 8 mNm max ONLY $£ 9.95$ (FT73Q).
Driver chip for motor: SAA 1027 ONLY $\{3.75$ (QY76H)
*SAVE 1 Kit containing everything you need. motor, SAA 1027, dato sheet and passives ONLY £13.35 (LK76H).

Sounds Terrific

Top Ten Kits

THIS/LAST
MONTH DESCRIPTION CODE PRICE BOOK

Over 100 other kits olso ovoilable All kits supplied with instructions. The descriptions obove ore necessarily shon Please ensure you know exactly what the kit is and what it comprises before ordering, by checking the oppropriote Project Book mentioned in the list above.

> Is it a turtle? Is it a robot? Is it a buggy? Yes! it's zero 2.

More Choice In Multimeters

A new range of very high quality multimeters offering truly amazing quality at the price. Pocket Multimeter, 16 ronges, 2,000ı2/V DC/AC ©6.95 (YJ06G)
M-102BZ with continuity buzzer, bottery tester and $10 \mathrm{~A} D C$ ronge, 23 ranges, $20,000 \Omega \mathrm{NDC}$ £14.95(YJ07H)
M-2020S with transistor, diode and LED tester and 10A DC range, 27 ronges, $20,000 \Omega \mathrm{NDC}$ §19.95 (Y J08J)
M-5050E Electronic Multimeter with very high impedance FET input, 53 ronges, including peak-to-peak AC, centre-zero and 12A AC/DC ranges $£ 34.95$ (Y J09K
M-5010 Digital Multimeter with 31 ronges including 2012 and $20 \mu \mathrm{~A} \mathrm{DC/AC} \mathrm{FSD} \mathrm{ronges}$, continuity buzzer, diode test, and gold-plated pcb tor long-term reliability and consistent high

The Maplin Service

All in-stock goods despatched some day for all orders received before 2.00 pm All our prices include VAT and carriage lfirst class up to 750 g).
A 50 p hondling chorge must be odded if your totol order is less than $£ 5.00 \mathrm{gn}$ mail-order
(except colologue).

8 Phone befare 2.00 p.m. forsome doy despotch
1985
CATALOGUE
Pick up o capy now of any branch of W.H. Smith or in one of aur shops. Price $£ 1.35$, or by post $£ 1.75$ from our Royleigh oddress
(quate CAO2C).

All offers subject to ovailobility. Prices firm until 10 th August 1985

[^0]: The gate is IC2, a transconductance amplifier whose gain is controlled by the current flowing into pin 5. The two halves of IC1 are connected as unity gain buffers, one before and one after the transconductance amplifier. The gain of the transconductance amplifier is adjusted to unity by PR1, so the overall gain of the audio path is also unity when the gate is open.

 The threshold detector consists of IC3d and the two halves of IC4. The input is taken either from the main audio path, immediately after the buffer stage IC1a, or from the EXT. KEY socket. R15 and C9 form a low-pass filter which removes RF noise and the signal is then passed to the amplifier stage IC4a whose gain is set by the sensitivity control. This is followed by a fixed gain stage, IC4b, which ensures that sufficient level is available to reach the threshold of the comparator.

 The window comparator is based around IC4d and is slightly unusual in using only one op-amp. When the output from IC4b is of sufficient amplitude, it will push pin 2 of IC3d higher than pin 3 via D5, or pull pin 3 lower than pin 2 via D4. Provided the gate is not in the bypass mode, pin 5 of the NAND Schmitt trigger IC5 a will be at a logic high level and the stream of negative going pulses from the output

