# Autoranging frequency meter

This meter measures frequencies in four ranges up to 10MHz (9,999kHz) with automatic switching between the ranges. It displays the four most significant digits.

The meter consists of four principal parts: input, timing, scaling and counter/display sections. Each is described separately but it must be noted that they are not necessarily separate modules, for example IC<sub>10</sub> and IC<sub>11</sub> are shared between the timing and scaling sections.

# Counting and display

The main counter, Fig. 1, is built around a 74C926 i.c. which has four binary-coded decimal counters with multiplexed outputs to common-cathode led seven-segment displays. The counter module receives the

by F. P. Caracausi

signal to be counted through MCP. A positive signal (see note) on the MGP line, labelled 'store', will latch the counter value into the internal output latches and this value is displayed permanently as the display select input to the 74C926 is held low. The counter is cleared by a positive pulse on the MCL line and the 'carry out' signal is used to indicate an overflow, occurring whenever the count advances from 9999 to 0000. This negative-going transition is switched back to positive between 5999 and 6000. The underflow signal at MUF is a lkHz (multiplexer frequency) pulse train which occurs as long as the most significant digit is zero; when the m.s.d. is not zero, there is no output.

## Seeling

The signal to be measured is fed to three cascaded decimal dividers, IC<sub>6.7.8</sub> (Figure

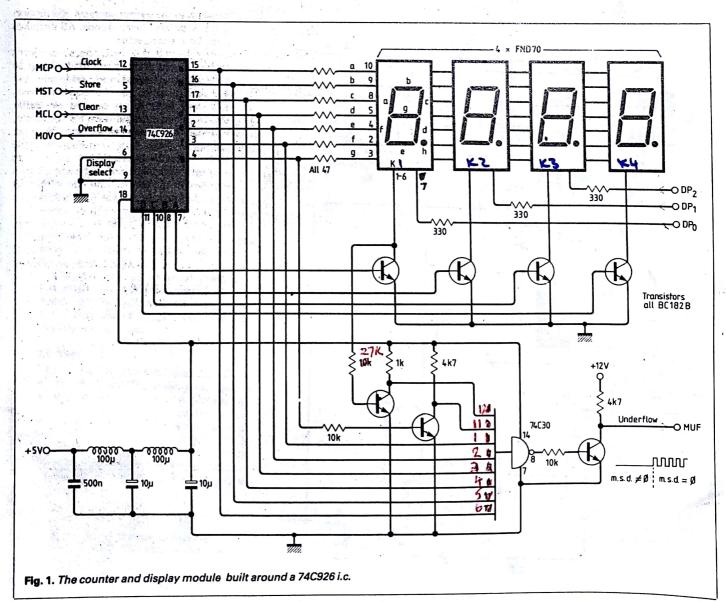



Fig 2. The scaling circuit automatically selects the range to be displayed.



Dr Francesco Paolo Caracausi studied physics at Palermo University. He has published several articles in electronics magazines. He works at the Cassa Centrale di Rispiarmo as a senior programmer for systems and data processing.

from the counter and SCL is derived from the underflow signal.

going high. ICE and ICL are generated in the timing circuit when overflow or un-

3), fed with a 50Hz pulse train, give a positive signal once a second. On the signal, MCE goes high which enables counter IC<sub>3</sub>, disables IC<sub>2,6,7,8</sub>, and stops the clock going to the main counter (signals MCE and MCP on the scaling circuit). MCE goes low if an overflow occurs on the main

Fig 3. The timing module generates control signals for the scaling and counting circuits.

2). Depending on the value of the scale counter IC9, the input frequency is divided by 1, 10, 100 or 1000. Provided that the MCE line is 'high', the signal is fed to the IC<sub>12</sub> counter section through MCP, while the appropriate decimal point signal is sent through DP 0, 1 or 2. The displayed number is read as kHz. Counter IC<sub>2</sub> is advanced by a positive clock pulse, SCP, and is cleared whenever it reaches a count of four or when the SCL signal is high. SCL and SCP both come from the definiter module where SCP is generated when there is a overflow signal O MCE The counters IC<sub>6,7,8</sub> are enabled by a low signal on ICE and cleared by ICL derflow signals occur. Timing The decimal counters IC1 and IC2 (figure FF<sub>1</sub> IC<sub>12</sub> CD4027 7IC<sub>11</sub> CD4011 O SCP counter (MOV is low) and this makes Q on IC1 to IC3 = CD4017 ( pin 8 - ground pin 16 - V<sub>dd</sub>) **WIRELESS WORLD MARCH 1983** THIS SEEDING STRANGE TO HOSE GOING TO MIZE LOSIE **37** MOEKS OIL BUT

10k

IC<sub>6-9</sub> - CD4017

IC<sub>10</sub>

Clock enable

CIDOX

CD4072

1011

10<sub>10</sub>

105 CD408

CLOO

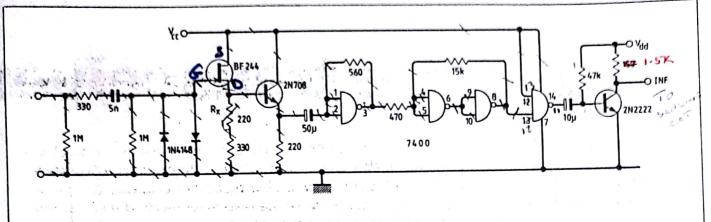



Fig. 4. Input module.

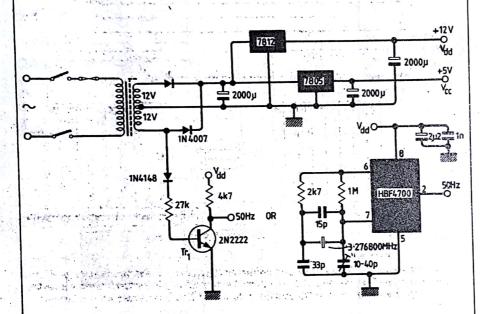



Fig. 5. Power supply. Two versions of a 50Hz clock generator are given, one derived from the mains frequency, the other gives quartz crystal precision.

19 70 30

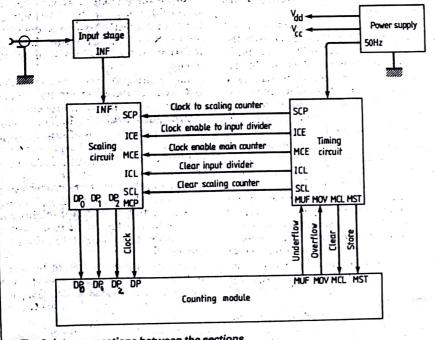



Fig. 6. Interconnections between the sections.

FF<sub>1</sub> go high and advances counter IC<sub>2</sub> by one to change the range. As IC<sub>3</sub> is enabled, it can generate the store signal, MST, and the clear signal, MCL. At the same time, through ICL, IC<sub>6,7,3</sub>, both flip-flops and IC<sub>1,2</sub> are all reset and the next count period

In an underflow condition FF<sub>2</sub> is set at the end of the count period as J on FF<sub>2</sub> is connected to output 5 of IC<sub>2</sub> which only goes high on a count of 50. When FF<sub>2</sub> is set, IC<sub>3</sub> is cleared through SCL and the next count starts at the lowest range (X.XXXkHz). An overflow condition may be simulated by pushing S<sub>1</sub>. This may be necessary if the main counter locks, which can happen because the 74C926 can operate at frequencies up to 3 or 4MHz.

# Input circuit

Figure 4 represents a classical circuit which requires no comment.  $R_{\mathbf{x}}$  is set to give the best results.

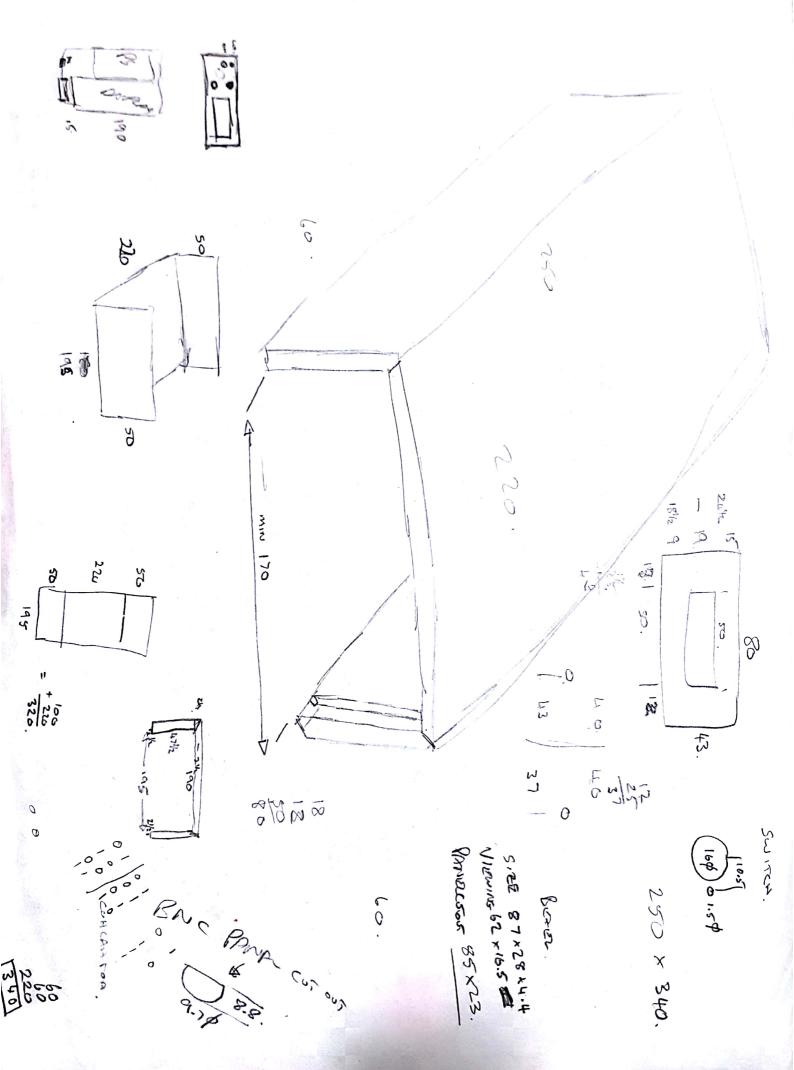
# Power supply and 50Hz generator

The power supply is a standard circuit to give  $V_{\rm dd}$  (12V) and  $V_{\rm cc}$  (5V). In Figure 5 there are two circuits for clock generators for the timing circuit. The first derives a signal from clipping the a.c. input, theoretically 50Hz. The second is built around an HBF4700 to give 50Hz with quartz precision.

Note. According to the 74C926 data sheet: "A low signal on the latch enable input will latch the number in the counters into the internal output latch". I found that it needed a high signal but if some versions of the i.c. work as described, it would be necessary to invert the signal by disconnecting the link between pin 11 of IC<sub>10</sub> and pin 11 of IC<sub>11</sub> and then connecting pin 11 of IC<sub>10</sub> to pin 10 of IC<sub>11</sub> (Figures 2 and 3).

# **Bibliography**

A. Fantini, Note sui frequenzimetri digitali. CQ Elettronica, July, 1974.
F. P. Caracausi, Frequenzimetro digitale automatico. CQ Elettronica, Sept. 1976
F. Bonadio, 50Hz con lo HBF4700A, CQ Elettronica, April, 1980.


FRONT PANEL

3, S mm ⊕ § 2 3 8 イエイ Ø えな 10 . 50

OFF-PON F PUSH SWITZE ON REAR PANJE.

6/1/84

2/47

