s

G P INDUSTRIAL ELECTRONICS LTD.
Ekardon Place, North Hill
Plymouth PL4 8HA Tel. (0752} 28627

: e T S — R ——

e

Ribbon cable not available:

edge

—

i
§
:

PROLOGUE - WHAT THE MANUAL COVERS

This manual deals with the construction and use of

SOFTY which is a bench-tool for the system designer.
A prof o~al level of understanding is expected and
assumed.

No apology is.offered to the beginner about the absence

of sec ns on the aspects of hardware and software design
of microsystems in general. There are no explanations of

Computer Architecture, Boolean Algebra or even Hexadecimal
Arithmetic and there is nothing about programming MPUs in

general or even about the INS 8060 in particular. Instead
a list of useful publications is appended.

SOFTY is about hardware and software design rather than
about programsiing. The world has many programmers but very
few designers. If you find these contents baffling take
heart: all the MPU does is to turn bits on and off. Meanings
are often obscured in esoteric language but the concepts behind
the words are always simple. Each instruction causes bits
in registers to change in a straightforward and obvious way.
Complex functions are performed by sequences of such simple
instructions and that is all that programming is about.

SOFTY - DEFINITION.

SOFTY is a small computer which is designed to be a
complete and useful tool in its own right. It is not a
minimal system to which memory cards and peripherals should
be added. SOFTY has all the peripherals it needs and it
would not be easy to add extra memory in addressing s$pace.

SOFTY already has a Visual Display Unit which makes internal
operation totally transparent. It also has a cassette interface
for storing programs and an EPROM programmer for making programs
@ permanent part of any microsystem. It has two eight bit
1/0 ports which are capable of a wide variety of data transfers
and a serial 1/0 interface. SOFTY has a keyboard for entering
machine language programs and a set of assembler functions for
manipulating memory contents. Once a program has been written
SOFTY may action it using the internal MPU or offer it to
an external MPU for action. SOFTY is therefore a universal
program development system.

SOFTY is not designed to support a full-scale programming
Tanguage (like BASIC). It cannot directly be used to balance
your household accounts or play intergalactic snakes and ladders.

SOFTY is for the development of new PRODUCTS which are also
microsystems. These new products themselves might easily be
accounting machines or videogames. (In fact SOFTY was used
to develop a TV chess game and s currently working on a Space
Raiders type of TV game)

The keyboard functions themselves form a special high

level language which interprets the requirements of the
system designer.

SQETY AS A CONTROLLER.

Most MPUs wi11 not be used-in formal computers which have
alphanumeric keyboards and VDUs. The majority will be used
in communication and control systems. Most programs will
be developed in machine-code or assembler-language and contain
relatively few instructions. When such controllers are produced
in large numbers they will be in the form of single chip
computers which incorporate the program in masked ROM. Low
volume applications will use EPROM for the program because
the numbers of units would not justify a masking charge.

SOFTY can be used by itself as a controller. It can
also be used as a development-system for an INS 8060 three
chip microcomputer. The three chips would be 2708 (or 2716
if 2K of program memory was required) INS 8060 and INS 8154,
The cost of such a control computer would be less than £30
in quite small quantities. SOFTY is such a minimal system
with a VDU, EPROM programmer, Keyboard etc added

SOFTY has a microcycle time of exactly one microsecond,
controlled by a crystal oscillator. The INS 8060 has an on-
chip programmable timer which will count microsecond increments
and therefore provide a real-time clock to synchronize events.
It is possible to calculate the execution time of any program
EXACTLY TO THE MICROSECOND, provided that it does not depend
on random inputs.

When supplied SOFTY contains firmware in the form of ‘a
1K x 8 EPROM TYPE 2708. The firmware forms a useful monitor,
editor and assembler for the development of programs. There
is no reason to retain this firmware in many control
applications. SOFTY can be reprogrammed to do only those
tasks which are required.

A program in EPROM may also be run from the program socket.
This permits the retention of useful programs in EPROM
which may be plugged into the system when required.

Many naovices believe that their particular application
requires a 'powerful' processor which has a complex instruction
set. This is often untrue. The powerful processors have

limited application because they are not versatile. Simple
processors will have real benefits, such as control or flag

lines and on-chip clock, and the INS 8060 is often more cost-
effective than the Z80. The only circumstance where a
powerful processor will be advantageous is one which will

use a lot of memory, and the additional complexity of the
hardware can be offset against memory costs.

Actual sales of MPUs reflect how readily they may be
incorporated into real products: a popularity poll would
produce guite different fawourites.

N . 2kl e N I R =

O REO

CONSTRUCTION.

Looking at the top of the board which has the component
positions printed, every pad visible requires a link to make
contact between tracks on the upper and lower sides. A wire link
should be inserted into each of these holes, soldered and trimmed.

Next the switches should be installed. Clean the pins by
scraping to ensure a reliable soldered joint and insert them into
the board. Take care not to press on the button part of the
switch because this may damage the domed disc inside.

Do not do any soldering on the lower side of the board
until all the components and sockets have been placed correctly
with their leads bent and trimmed. Take particular care to
orient transistors, diodes and capacitors correctly. Solder
the components from the lower side and the pin-throughs all
at the same time. This way you are less likely to miss any
joints,

The only holes which will not contain components are the
two dotted wire links for the cassette interface and the EPROM
selection. Use of these will be explained in the text and they
may be lTeft until the end of the testing stage.

When SOFTY is to be used by itself, and in any case to
test the device, the lines NCARD and NENIN should be connected
to ground.

If SOFTY is to be used for program development in an external
microprocessor system the address and data lines should be
connected via the card edge and not via the EPROM socket.
Therefore the ribbon cable should be connected to a 43- way
edge connector. Remember to connect a common ground 1ine,

NCARD, NENIN and NBREQ in some appropriate method to control
bus access. The 24 pin EPROM-type plug is for the non-SOFTY
end of the umbilical cord: this plug replaces the 2708 or
2716 EPROM device which SOFTY will later provide.

If SOFTY is to be used only as an EPROM programmer for
your system then you should devise a serial or parallel link
between your computer and SOFTY. The serial link can be via
the serial input(DIN socket) or any bit of either port. The
parallel link can be to port A with the handshake signals
going to the top two lines of port B. Consult manufacturers
data sheet on the INS 8154 [/0 port. The actual routine
which performs the transaction can be run in SCRATCHPAD or
programmed into an EPROM which is placed in the program socket
when needed. Manual entry of programs from hex listings is
time consuming and prone to error.

Do not connect the program voltage at any time (other

than duritng actual programming). Be careful with this 27 volt
Jtne which is capable of destroying every device on the board.

WHAT TO DO IF IT WILL NOT WORK.

1) Inspect the board with a magnifier in a strong 1ight.
Look for solder bridges between adjacent lines, dry
joints and components inserted the wrong way round.
This is by far your best chance of finding the fault.

2) Use an oscilloscope for this and the following tests.
Check the power supply pins of each IC in turn. Any
feedthrough of signal shows that the pin is unconnected.

3 Trace the divider chain through from the crystal.
Assume that any line which is running between high and
Tow levels is working correctly. Investigate any line
which appears to be conflicting or appears to be open-
circuit. Check any pin which is clamped at high or
lTow levels to find a logical reason for this.

L) Investigate the address and data busses, first at the
card edge and then at each device visited. Make sure
that all lines are running and not shorted to each other
or to one of the supply rails.

5) Start looking at the control signals at the MPU. Try
to isolate the fault in one particular region by thinking
about it logically.

6) Even if the fault is still present it is still almost
certainly due to a solder bridge, a dry joint or a
misplaced component.

SERVIC

It could happen that you construct SOFTY with care and
attention and yet it refuses to work. Naturally you will
suspect the components which have been supplied so you should
identify them with a mark before returning the SOFTY with
the standard fee of £20.

The detection and correction of errors in assembly
is a task which can be as time consuming as that of building
the machine and in many cases replacement of the PCB is
the only cure.

Any parts which have been spoiled will be charged also
- but if it appears that a defective part was originally
supplied the £20 will be refunded. Frankly this is a
slight hope.

GETTING A PICTURE

SOFTY will produce a picture on a VIDEO MONITOR or a TV
SET. If a monitor is to be used the UHF modulator may
be left off the board but a wire-link should be made in
its place - the ground rail passes through it.

The modulator supplied will work with most sets of UK
and European origin designed to receive 625 line transmissions -
but not French second-series sets which require another
pattern of modulator.

Tune a picture in channel 36. There may be pictures
in other channels but these will be inferior. The left
hand edge of SOFTY's picture is in the same place as the
left hand edge of the test-card. If the TV width control
is wrongly set it should be readjusted. A TV set which
receives the SOFTY picture may be used for normal viewing
without readjustment.

KEYBOARD CHECKS,

First check that all the keys work. On keying RESET
you should see four shaded bands of hexadecimal characters
and at least one of the lines of inverted video above them.
Inverted video means white characters on s black background.

It can happen that the domed disc inside a keyswitch
becomes displaced from its central position leading to
unreliable entry. The cure is to remove the top of the
switch and recentralize the disc. Once you are sure all
the switches are working reliably the panel should be
fitted and secured with bolts.

Keys 0 to F enter hexadecimal information into memory.
There are also a series of functions which may be used
after the SHIFT key has been pressed. The SHIFT key is
next to the RESET key and is marked with upward and downward
arrows denoting change of case. WHEN SOFTY IS AWAITING
AN UPPERCASE (FUNCTION) KEYSTROKE THE MODE FLAG IN THE
STATUS LINE CONTAINS FF.

HOW SOFTY WORKS: THE HARDWARE

The on-chip oscillator of the INS 8060 is controlled
at 4 MHZ by a crystal. This master clock frequency is divided
down by LS and CMOS counters. Sync, blank and shade signals
are derived and combined with serial hexform data to produce
a composite video signal. The video signal is fed to a UHF
modulator to produce an RF signal which will drive a TV set
via the aerial socket.

The VDU divider chain also produces horizontal and vertical
addresses which pass through a tri-state buffer on to the main
address bus. This tri-state buffer is enabled by the NENOUT
signal from the INS 8060 microprocessor. This allows the
VDU to scan memory by placing signals on the address bus when
the INS 8060 is not using the bus itself.

The eight data lines are connected to a Quad multiplexer
which selects the high and low four bits in turn. These four
outputs are used to address a PROM which is also addressed by
line-select addresses from the VDU divider chain., The PROM
converts the four binary inputs into a visual hexadecimal form.
Each character so formed is three bits wide and another bit forms
the space between characters. The PROM outputs are connected
go a shift register and clocked out at 4 MHZ as serial hexform

ata.

As all eight data bits are used a ninth bit is added to
memory to form the cursor. The cursor memory is a single
bit 1K RAM chip. This is written to from a flag line of the
MPU (F0). The MPU does not read from this memory device.

The screen memory (WORKING RAM) is a pair of 2114 chips
giving 1K x 8. Not all of this can be presented on screen at
the same time - each screen page shows the contents of 512
addresses. The screen page selected depends upon the position
of the cursor.

SOFTY's own working program is contained in a 2708 EPROM.
Although the contents of the firmware EPROM cannot be presented
on-screen directly the firmware can be copied into working
RAM by a keyboard instruction.

A programming socket for EPROM devices is also provided
and data contents of devices can be read from this socket.
In this case the contents can also ke observed directly on=
screen.

Also present in addressing space is an INS 8154 RAM 1/0
device which contains 128 bytes of RAM and two eight bit 1/0
ports, Bit A7 of the address bus which forms the memory=-1/0
select to the chip is inverted and this allows part of the
chip's RAM to appear as inverted video at the top and bottom
of the screen. This RAM is used as SCRATCHPAD by SOFTY for
storage of routines and data which does not belong to the
program under development.

F—r—_

The last line of the SCRATCHPAD which appears directly
above the main screen contents is called the STATUS LINE.
The particular significance of each location is explained -
in the diagram and these should be memorized or the TV screen
labelled.

The keyboard is connected in a matrix across ports A and
B. SOFTY would scan a matrix of 64 keys but only 20 are present
The reset key is not part of the matrix: it is conditioned
with an R/C combination and a couple of gates and used to
reset the INS 8060 and the INS 8154,

Seven lines from port B and Flag 2 from the MPU are connected
to an eight-input NAND gate which drives the CONT input of
the INS 8060. When the MPU has no more work to do it
returns to the keyscan routine which places flag 2 high.
If no key is depressed all lines of port B will be high and
the CONT input will be driven Tow. The MPU then hands the
bus to the VDU scanner by placing NENOUT low.

The page of information to be scanned is derived from P1
(the cursor position pointer) and latched into the lowest two
bits of port A. Two screen pages of EPROM and two of RAM can
be selected in this way with parts of the SCRATCHPAD at the
top and bottom of the screen.

The INS 8060 cannot reclaim the bus until a key is pressed
which will drive CONT high. The keymatrix is then scanned
and the particular function requested is actioned before
the program returns to the keyscan routine and flag 2 is
placed high again.

In applications which demand the use of ports A or B
the keyboard presents no problems: if no key is pressed it
may be ignored.

When the MPU is using the bus the addresses are not being
scanned by the VDU in an orderly fashion and the picture will
be blurred and meaningless. Whilst the action is in the keyscan
subroutine as described above and a program is being entered
the user has a clear view of memory contents.

Use of the PORTS A & B for serial and parallel data
transfers and use of the Serial Input and the Serial Output
will be covered in detail later.

IHE EPROM PROGRAMMING SOCKET.

The program socket may contain an EPROM device of the
2708 or 2716 variety as a board-strap option. During
programming the NHOLD input of the INS 8060 is driven low
which 'freezes' the data and address busses whilst the program
pulse is applied. A 555 timer determines the length of
the program pulse and R/C combinations observe the correct
set-up and hold times.

A high output on Flag 1 of the INS 8060 forms the
program-enable. 2708s are programmed with F linked to ;
E. For 2716s link E to D. F then becomes the most significant
bit of the address and may be connected to Vcc or ground to
select which half of the 2716 will be programmed. The effect
of the link is to change which pin receives the program-enable
input.

DO NOT ATTEMPT TO PROGRAM SINGLE RAIL DEVICES SUCH AS
THE INTEL 2716.

The 27 volt programming voltage is connected at the point
marked P at the bottom right corner of the keyboard. The
program-voltage should not be left connected except when it is
actually required to program an EPROM.

BEWARE that if the program voltage is connected alonej
without the other voltage rails DESTRUCTION OF THE EPROM IS
GUARANTEED .

Care should also be taken that the high voltage Iine.does
not contact any other devices on the board - this is why it
is not brought to the card edge.

The EPROM socket is not only used for programming. It forms
a useful extension for firmware because programs which have
been placed in EPROM may be actioned from this socket.

KEYBOARD FUNCTIONS,

When power is first applied each RAM cell takes up
an arbitrary state which results in a random display.

RESET zeros the internal registers of the INS 8060
and the INS 8154. The first instruction will then be
fetch from location #0001. (The # sign will be used for
a hexadecimal number) RESET may be used to terminate
any program which is running.

The SHIFT key is on the left of the RESET key. It is
used to select the functions which are described in the
upper half of each keylabel. When a keystroke should
be preceded by a SHIFT keystroke the $ symbol will be used
in the text.

When SOFTY is awaiting an UPPERCASE instruction, immediately
after the $ key is pressed, the byte FF will appear in the
MODE FLAG of the STATUS LINE.

Pressing the $ key again will exit from the uppercase
mode and at the same time remove any spurious cursor
highlights.

The effect so far would be to give a screenful of
random data with a single cursor at the top left corner.

$F (which means that the SHIFT key is struck and then
the key marked F is struck) will now clear memory and the
screen will be filled with FF bytes. The reason why an all-
clear of highs (FF) is chosen rather than all lows (00) is
that an unprogrammed EPROM is all-high. Therefore it

© permits the selective writing of programs into EPROM a

section at a time. $F clears only those locations which
are BEYOND the cursor.

Hexadecimal numbers may now be entered into memory
sequentially from the keyboard. Al1 the keys labelled 0
to F should be tried and correct operation confirmed.

CURSOR keys will move the cursor backwards and forwards
in memory. The cursor will step if the key is held down
and then jump a line at a time until the key is released.

NOTE that the first two digits in the STATUS LINE show
the first two digits of the absolute cursor location, and the
second two digits are the lower cursor address.

$0 is an exit from the SHIFT mode and is similar in
effect to keying $ twice.

$1 stores the current cursor location for later return
or the calculation of jumps and displacements. When the
cursor is moved subsequently the hex difference between the
two locations is shown in the penultimate byte of the STATUS
LINE. The stored cursor address appears in bytes 3 & L.

$2 permits the definition of a block of data by moving

the cursor BACKWARDS. Start with the cursor on the last
location of the intended block.. The block may immediately
afterwards be stored away in SCRATCHPAD or moved tc a different
part of memory. The limiting size for storage in SCRATCH is
108 bytes. For block shifts 127 bytes is the limit. This
is why the screen is divided into shaded bands of 128 bytes:
for most MPUs 128 bytes forwards or backwards is the limit
of a single byte displacement of program-counter relative
instructions. The shaded bands help in the estimation of
whether a particular location is within reach or not.

$3 will permit the shifting of the block as defined
by $2 forwards or backwards as directed with the cursor keys.
This is a system for rearranging memory contents. Intervening
data is not destroyed - it is shifted to the other side of
the block. A single $ stroke will exit from this mode.
NOTE that this function will only work in RAM - data in EPROM
cannot be rearranged. :

$4 1ifts the aerined block into SCRATCHPAD and stores it
a@s a recursive subroutine. |In effect this enables the user
to program keyfunctions. For example a bipolar PROMburner,
Teletype 1/0, parallel interface to a Z80 system for which
SOFTY was acting as EPROM programmer and a subroutine to
convert hexadecimal into Baudot have all been fitted into
SCRATCHPAD as keyfunctions. Incidentally a recursive subroutine
is one which exits at its entry point and can therefore be
called time and time again without reloading pointers. |f
it is possible to see the first line of inverted video
below the screen the effect of $L can be viewed directly
and the mechanism of the recursive subroutine observed in
action. NOTE that it IS POSSIBLE to 1ift sections out
of EPROM using $4 but it is NOT POSSIBLE to block-shift
out of EPROM using $3.

$5 writes back the block in SCRATCHPAD defined by $4
starting with the current location of the cursor. This
process has NO EFFECT on the contents of SCRATCH and it
may be repeated.

$6 hands control to a user program in the EPROM socket.
The user can make a library of useful routines in EPROM
which are placed in the EPROM socket when required and called
by $6.

$7 transmits the contents of working RAM in serial
form from the DIN socket in a TRANSWIFT transmission which
may be stored on cassette tape. When finished the MODE FLAG
contains an AA byte.

$8 samples the serial input for an incoming TRANSWIFT
transmission. As received the data is written into screen
RAM (the process is visible) and when complete the transmission
is checked for validity and the checkword placed in the MODE
FLAG. |If the transmission is valid the byte in the MODE FLAG
will be AA.

$9 copies back the comtents of SOFTY'S own firmware on
S rREm

O

$A compares the contents of screen RAM with the contents
of the EPROM in the programming socket. The number of differences
will be counted in the MODE FLAG and any differing locations
will be highlighted. One use for this function is to check
that an EPROM is erased by keying $F then $A.

$B is the EPROM programming function. The 27 volt line
should be connected at the point marked P at the bottom right
corner of the keyboard first. On pressing $B the contents
of RAM will be transferred to the EPROM. Afterwards the contents
will be read and compared as described for $A. The correct
Tinkage for 2708 or 2716 should be made as described elsewhere.
During the 100 hit cycles prescribed for EPROM programming
a counter is kept in the MODE FLAG. The process takes about
2 minutes per 2708,

$C copies the contents of EPROM into screen RAM.

$D is the matchbyte function. When followed by two
hexadecimal digits all locations containing that particular
byte will be highlighted. The matchbyte function can be repeated
to find a particular section of code.

$E exchanges the contents of the stored cursor of $1
with the current cursor. This function is useful for making
long range jumps and calculating the difference between
locations as a hexadecimal number. It will be noted that
the operation of $E will cause the penultimate byte in the
STATUS LINE to complement.

$F is the all-clear function as previously explained.

RECOMMENDED READING.

PUBLISHER "TITLE,

Pub No 426305290-001C INS8060
Single-Chip 8-Bit N-Channel
Microprocessor (SC/MP Family)

National Semiconductor.

N.S. SC/MP Technical Description.

N.S. SC/MP Microprocessor Applications
Handbook.

N.S. SC/MP Microprocessor Assembly

Language Programming Manual.

N.S. INS8154 N-Channel 128-by-8 Bit
: RAM Input/Output (RAM 1/0)

KEMITRON GUIDE TO SC/MP PROGRAMMING by Dr. Drury.

ELEKTOR MAGAZINE. Series 'Experimenting with SC/MP!'

Nov 77 to Mar 78 and other articles.

SERIAL INTERFACES

The INS 8060 has pins dedicated to serial input and serial
output which communicate directly with the Extension Register.
The serial output line is latched. Serial communications
may readily be handled by software.

Conditioning circuitry is interposed between the Sin and
Sout pins and the DIN socket via which serial communications
are handled. In the case of Sout a 10K resistor is used
merely to protect the MPU pin against external high voltage
transients. This resistor could be removed to drive TTL directly
and replaced by a wire Tink.

The Sin line first passes through a capacitor and a 10K
resistor (which could also be removed for specific applications
which require signal reproduction down to d.c.) and then to
the input of an EX-OR gate which is suspended in the centre
of its transfer range by a 100K variable resistor from Vcc
to Ground. This gate performs two functions: firstly
it amplifies and squares up the input signal and gives some
control of the mark/space ratio (using the VR) and secondly
it provides an easy way of inverting the input when necessary.
If the other input of the EX-OR gate is at Vcc the input will
be inverted - if it is at ground the signal will pass unchanged.
A dotted line will be found on the PCB marked A----B----C.

If A is linked to B the input signal will be unchanged. If
B is linked to C it will be inverted.

SOFTY is capable of handling serial transmissions at 110, .
300, 800, 1200, 2400, 4800, 6400, or 9600 baud using a subroutine
containing less than 35 bytes of code, but such routines do
not form a part of the provided firmware. When required such
programs should be run in EPROM or SCRATCHPAD, unless the user
chooses to modify the firmware.

RANSWIFT, THE CASSETTE INTERFACE,

In order to leave the Serial Lines free for other forms
of synchronous and asynchronous data transmissions, such as
a CUTS FSK tape interface, teleprinter 1/0 or a direct line
to a larger computer, a method of storing data on tape has
been devised which entirely software.

TRANSWIFT is a software modem. Patent application has been
made for this novel method of serial data transmission. The
name TRANSWIFT describes a preferred form of data transmission
in which each bit of a succession of binary bits is conveyad
as the interval of time between two successive changes in
magnitude. These intervals are predetermined by whether the
bit has a value 0 or 1. Inversion of the waveform has no
effect upon the essential succession of intervals. TRANSWIFT
has no clock and cannot be regarded as either synchronous or
asynchronous.

Recovery of data is performed by squaring the waveform at
its points of transit across an intermediate voltage level
to produce a serial waveform of absolute binary values.
This waveform is sampled at a STEP interval from each positive
(or negative) transition and the value of the STEP may be
calculated automatically from the incoming waveform.

In effect TRANSWIFT solves many problems with regard to
data transmissions in limited bandwidth media: it is relatively
insensitive to changes in speed and level and is therefore
less prone to the effects of "dropouts'; it will run at
a data transmission speed which is close to the upper freguency
l1imit of the band and virtually no hardware is required.
The 1imiting factor in speed is the ability of the processor
to sample and store the incoming data, rather than the
limit imposed by bandwidth in cassette storage applications.

IRANSWIFT - SETTING UP THE CASSETTE INTERFACE,

The DIN socket is wired to- tape recorder standard: pin 1
is the input, pin 3 the output and pin 2 is connected to
Ground. A mirror lead should be used to make direct data
transfers between SOFTY and a cassette recorder. It is also
possible to make data transfers between two SOFTIES.

Unfortunately not all tape recorder manufacturers use DIN
standard 1/0 but SOFTY should work with any recorder once
the correct method of interconnection has been found.

It is helpful to be able to hear the recorded data. On some
recorders the insertion of a plug into the output socket
operates a cut-out switch: in such cases it is suggested
that the operation of this switch be defeated by bridging it
with a lTow value resistor. It may be that the setting of
the recorder's volume control will affect the output signal
- but this is not always so.

Observe the voltage on pin 24 of the INS 8060 and confirm
that adjustment of VR1 will cause it to swing between Vcc and
Ground. Leave VR 1 set at the point of change. This should
be very close to the centre of travel.

Record some data which is easy to identify on tape and then
clear screen memory. Check for a loud and continuous tone
lasting about 5 seconds on replay. With SOFTY in the RECALL
mode attempt to recover the data. Even though the screen
will be obscured by constant action of the MPU the data should
be clearly seen as it is written into screen memory. When the
transmission is complete SOFTYshould return automatically to
normal operation.

When the data has been recovered SOFTY will EXOR all the
data bytes together with a check-byte which was appended
at time of transmission and place the result in the MODE FLAG.
If the transmission has been received correctly the byte
flagged will be AA.

If attempts to recover data with AB linked are unsuccessful
then BC should be linked instead. Some slight improvements
may be effected by adjusting VR1 slightly, but such adjustments
are a waste of time if the system dees not work at all.

PARALLEL INTERFACES USING PORTS A & B.

The two eight-kit programmable /0 ports are a part of the .
facility of the INS 8154 RAM 1/0 chip. A more detailed description
is available in the manufacturers data sheet.

Each port consists of an eight bit output data latch and an
eight bit input data latch. Any bit may be defined either as
an input or as an output. It is also possible to set, clear
or read any bit individually. Moreover, port A may be operated
in strobed input or strobed output modes.

Associated with each port is an output definition register

(ODR). Each ODR is an eight bit latch which defines which of
the bits will be used as outputs. The ODR is a write-only
register.

An Interrupt Request line from the INS 8154 is connected
to Sense A of the INS 8060 and will generate an interrupt
This signal is only active when port A is used in the strobed mode.

SOFTY's master reset line is connected to the INS 8154.
After reset all 1/0 ports will be in the basic 1/0 mode and
configured as inputs. |f SOFTY's firmware is retained port A
is then redefined as outputs and used to select the on-screen
page and to scan the keymatrix which is read from port B.

As there are eight bits in each port SOFTY would scan a matrix
of up to 64 switches.

A port can have some inputs and some outputs since there is
an ODR latch for each bit in the port. A write to a bit defined
as an input will Toad a new value into the output data latch

but it will have no effect on the /0 line.

A data read from lines defined as outputs will
data from the output data latch, provided there
circuit on the 1/0 line.

read the
is no short

When port A is to be used
two bits of
Accordingly

in one of the strobed modes
port B are used for handshake control functions.
only six bits of port B are available for normal

1/0. PB 7 and PB 6 are masked from parallel writes to
port. B when port A is in the strobed mode - but not from single
bit writes. When initiating strobed mode a write to port B

ODR should be performed first of all with 0 in PB 7, 1 in PB &
and the other bits as 1 (outputs) or 0 (inputs) as required.

The mode definition register (MDR) is also a write-only
register which defines the operating mode of port A only.

It is a convention on INS8060 systems to use P2 as the
RAM pointer. SOFTY uses P2 to point to the RAM 1/0: locations
00 to 7F will address the RAM part of the INS8154, Locations
70 to 7F are in fact the STATUS LINE of information - memory
locations which are used internally by SOFTY's firmware.

)) Here is a table showing the manner in which the ports and
their associated registers may be addressed.

ruction Action Remarks,

CA 9X Set Bit. Bit selected by X. I1f X = ¢ to 7
bit is in port A. If X =8 toF
bit is in port B. The accumulator

CA 8X Clear bit. and data bus are not involved
in bit set/clear operations.

C2 8X Read bit. The bit read does not appear in
its normal place in the accumulator.
It becomes the most significant
bit and the other bits become 0.

As only the sign bit is affected
a bit read can be followed by a
conditional jump-if-positive.

C2 A0 Read port A.

C2 A1 Read port B.

CA A0 Write to port A,

CA Al Write to port B.

CA A2 Write to ODR A. A1 in the ODR register defines

. the associated line as an output.

CA A3 Write to ODR B. A 0 defines it as an input.

CA Au Write to MDR. The MDR defines mode of operation
of port A. On initiation normal
1/0 mode is selected. A data write
will select other modes as follows:
Data, Mode,

00 Normal 1/0

20 Strobed Input.

60 Strobed Output.

EO Strobed Output (Tri-State)
rob

The peripheral device places data on those lines of port A
which have been defined as inputs and applies a negative-going
strobe signal (SIB) to PB 7. The data will be latched into
port A on the rising edge of STB and this will happen whether
the INS 8154 Is selected or not. The MPU can be performing
some other task at the time.

When data is in the latch SOFTY will output a high signal
on PB 6 to Indicate to the peripheral that the input buffer
Is full (IBF).

This automatically generates an internal interrupt request
which is ANDed with the output data latch of PB 7 which now
performs an Interrupt enable function. (This latch may be set
or cleared by a single bit write to PB 7)

»3

AD11-ADO

PROGRAM COUNTER
Low

POINTER REGISTER 1
Low)

POINTER REGISTER 2
oW

READ BUS (LOW)

POINTER REGISTER 3
Low)

BUS

NENIN
ACCESS

sout

NHOLD

CONTROL
NADS

NADS

STATUS
REGISTER

FLAG 0

FLAG 1

£oky INSTRUCTION FLAGZ

0STATUS

_—
—_—
—_—

NWOS ~e——————p
e
—_—

4 8ITS)
—]

KRST

0ATAID
REGISTER

INSTRUCTION
REGISTER

087-D80

INS8060 Internal Architecture

SENSE A =——3p|
SENSE B =3 RAM
SERIAL IN =i 10 ﬁ
SERIAL QUT <€=== INS8060 1%3
FLAG 0 <t BYTES
FLAG 1 < RAM
FLAG 2 <@
ROM Sgixg
1024 x
Rom 2048 x 8
4096 x 8
8192x 8
SC/MP Minimum System
SC/MP STATUS REGISTER
7 6 5 4 3 2 1 0
CY/L | OV Sg Sa IE Fo Fq Fo
Flags Descripticn
Fo - Fo | User assigned flags O through 2.
IE Interrupt enable, cleared by interrupt,
SA. SB Reac-cnly sense inputs. If IE = 1, Sa is interrupt
input.
oV Overflow, set or reset by arithmetic operations.
CY /L Carry/Link, set or reset by arithmetic operations or
rotate with Link.

© 1976 National Semiconducto, Corp

SENSE A
INTERRUPT

SENSE B

2x8-BIT
1/0 PORTS

7. 3j2(1 0 7 . 0
Op m| ptr disp
1. MEMORY REFERENCE e =
Op Code
Mnemonic | Description Operation Bace Base Code Modifier
LD Load (AC) « (EA) cooo Op Code = Base + m + ptr + disp
- C800
51 Store (EA) - (AC) Address Mode|m | ptr | disp | Effective Address
AND AND (AC) « (AC) A (EA) 13000
OR OR (AC) < (AC) V (EA) D800 PC-relative 0000| 0000 | 00xx | EA = (PC) + disp
XOR Exclusive-OR (AC) « (AC) ¥ (EA) E000 Indexed 0000 | 0100 | 00xx | EA = (ptr) + disp
DAD Decimal Add (AC) (AC)10 + (EA)10 + (CY/L); (CY/L) E800 e
ADD Add (AC) « (AC) + (EA) + (CY/L); (CY/L), (OV) Fooo e |
- - . F800 uto-indexed 0 100 | 00xx | If disp > 0, EA = (ptr)
CAD Complement and Add (AC) « (AC) + ~(EA) + (CY/L); (CY/L), (OV) 0200 If disp <0, EA = (ptr) + disp
0300
xx = -128 to +127
Note: -If disp = -128, then (E) is substituted for disp in calculating EA.
[; 2(10 v 0
Op ptr disp
2. MEMORY INCREMENT/DECREMENT e i
Op Code
Mnemonic | Description Operation : Base Base Code Modifier
ILD Increment and Load (AC), (EA) < (EA) +1 A800 Cp Code = Base + ptr + disp
. = B800
DLD Decsement and Load (AC), (EA) « (EA) - 1 ; otr disp: | Eftective Addres
Note: The processor retains control of the _ 2
input/output bus between the data read and 7 g;gg 00xx: | EA = {ptr) +disp
write operations. 0300
xx = -128 to +127
. 0 7 0
Op data
3. IMMEDIATE byte 1 byte 2
Op Code
Mnemonic | Description Operation Base Base Code Modifier
LDl Load Immediate (AC) « data c400 Op Code = Base + data
AN! AND Immediate (AC) < (AC) A data D400
ORI OR Immediate (AC) < (AC) V data Dcoo
XRI Exclusive-OR Immediate (AC) « (AC) ¥ data E400
DAl Decimal Add Immediate (AC) « (AC)10 + data1g + (CY/L); (CY/L) EC00
ADI Add Immediate (AC) « (AC) + data + (CY/L); (CY/L), (OV) F4a00
CcAl c and Add Immedi (AC) « (AC) + ~data + (CY/L); (CY/L), (OV) Fcoo
Op Code
Mnemonic | Description Operation Base Base Code Modifier
JMP Jump (PC) « EA 9000 Op Code = Base + ptr + disp
n, 9400
J» Jump If Positive If (AC) >0, (PC) < EA 600 Address Mode| ptr disp | Effective Address
J f If (AC) = G, (PC) « EA i
Iz s e (550 rif 1540 gcoo | PCerelative 0000 | 00xx | EA = (PC) + disp
INZ Jump If Not Zero If (AC) # 0, (PC) <~ EA
Indexed 0100 | 00xx [EA = (ptr) + disp
0200
0300
xx =-128 to +127
pe
3
7 0 yi 0
o Op disp
5. DOUBLE-BYTE MISCELLANEOUS byte 1 byte 2
Op Code
5 Base Base Code Mcdifier
Mnemonic | Description Operation
8F00 Cp Code = B +di
DLY Delay count ACto-1, . pruscombeset Cip
K delay = 13 + 2(AC) + 2 disp + 29 disp
microcycles
7 0
Op
Mnemonic | Description Operation Op Cotle
LDE Load AC from Extension (AC) ~ (E) 0
XAE Exchange AC and Extension (AC) — (E) a1
ANE AND Extension (AC) « (AC) A (E) =0
ORE OR Extension (AC) ~ (AC) V (E) =
XRE Exclusive-OR Extension (AC) = (AC) ¥ (E) o0
DAE Decimal Add Extension (AC) = (AC)10 + (E)1g + (CY/L), (CY/L, B8
ADE Add Extension (AC) = (AC) + (F) + (CY/L); (CY/L), (ov) & | T°
CAE Complement and Add Extension | (AC) « (AC) + ~(E) + (CY/L); (CY/L), (OV) 48

4a6

+5v 43 >— Vee
07 R 4 B
o By i \\l‘:: en 8 o g 1Y
1 G me b:‘g & Lces ED t
ov el T e TCo8 F XTAL ics ic |8 i ez
g & I (m] o 1 g e UHF MoD
] Vee (3
. 3 _—l
NBRER 23 B t Basa s o
NENIN 24 g 3Enin enoor |& 5 @ pueey
! {
sout -Im | @ouuo‘
1c7 ——:ﬂ:#~——
22 : 1 I I[) 4070
5
P (O EbAon
Ic 20 " 2 !
7
8 Icé 1
- i 2
1l 3
rﬂ__Jﬁ+W< 4
o 5
ol 3
f'1_l
] ":2: 28
NREAD 2589 — AN Jee e %
NWRITE 26 Bs] Ri4 ;I cie b2
NCARD 270> L RS =t e/ ?n §
ov | s g ;
E ‘ 1t 3 ¢
FL R, =1
& EEy B8 = =1
i ;] i f It
- E— |
Al _ADDRESS BUS o
1ii«@k47
A
ic 21 T T T 6--%--% 2
Vi D4|
Vec
IN PoluaTioN % 4
OF KEY MATRIX
; : : :
1c22 2 e © Ics 2 ici4 7 icio 2 ic4
v : =5 S eI SN R =5 . !
2 s 3 8 4 [3
4 ad vv& REVMATRIR H I r— H H
3
2r : KRR 4 ¢ s ! ¢
o !)()() s
S i g ov ov ov v v
22
28
%
ov PBo | 1 Il o 4 PAT {l ‘b!] 1 4 ‘n
DATA BUS
1
1.C.s JRANSISTORS. ’Eﬁlilﬂﬂ§*
1. 7u4LS93 1:2:3:4,:5,6, BC182 (NPN) 1,2,h,5,9,1h,16,18,19,25,26,29,30,31,32,33,3“,35,36,
2. 74LS157 7 BC212 (PNP) 37,38,40,42 all 10K
3. 74LS90 3417 6K8
L. MM2102 6,11,12 22K
5. CD4o081 DIODES ., 7 L7K
6. CD4503 . . . 8 3K9
7. CDu4503 1,2,3 ;4 IN91L4 or 1INL1LS 10 15K
8. 7u4LSO04 ZD1 2.7volt Zener. 13,24,20 1K
9. 93427 (745287) 15 330
10, MM2114 21,23 100K
11. 741873 XTAL. 4 MHZ CRYSTAL. 22 82K
12, CDhOLO 27 L7
13, 7495 28 18
14, MM_114 CAPACITORS . 39,41 2K2
15. CD4O70 (7uC86)
16. 74LSL2 16 volt (or more) Elect. 10 220pf C T = Tantalum Bead
17. MM2708 4,9,13,14,20 6 volt (or more) Elect. 12,15 330pf C M = Mylar
18. CDLO11 2,3,6,8, Decoupling discs. 17 22pf ¢ C = Ceramic Disc
19. LM555 5,11 5000 or 4700pf 19 560pf ¢
20. INS8060 7,16 .0luf Mylar
21. INS8154 18 .1 or .082uf Mylar

CbL068

7. POINTER REGISTER MOVE

Mnemonic | Description Operatiun

XPAL Exchange Pointer Low (AC) < (PTR7.0)
XPAH Exchange Pointer High (AC) — (PTR15:8)
XPPC Exchange Pointer with PC (PC) — (PTR)

8. SHIFT, ROTATE, SERIAL 1/0

Mnemonic | Description QOperation

sSio Serial Input/Output (€,) = (Ej.1), SIN — (E7), (Eg) = SOUT
SR Shift Right (ACj) ~ (ACj.1), 0~ (AC7)

SRL Shift Right with Link (ACj) = (ACj.1), (CY/L) - (AC7)

RR Rotate Right (ACj) = (ACj.1), (ACq) = (AC7)

RRL Rotate Right with Link (AC{) = (ACi.1), (ACQ) — (CY/L) - (AC7)

9. SINGLE-BYTE MISCELLANEOUS

Mnemonic | Description Operation
HALT Halt Pulse H-flag
CCL Clear Carry/Link (CY/L) -0
scL Set Carry/Link (CY/L) =1
DINT Disable Interrupt (IE) <0

IEN Enable Interrupt (IE) <1

CSA Copy Status to AC (AC) « (SR)
CAS Copy AC to Status (SR) « (AC)
NOP No Operation (PC) < (PC) +1

MNEMONIC INDEX OF INSTRUCTIONS

Read Write Total
Mnemonic | Opcode | Cycles Cycles Microcycles
ADD FO 8 0 19
ADE 70 1 0 7
ADI F4 2 0 1
AND Do 3 0 18
ANE 50 1 0 6
ANI D4 2 0 10
CAD F8 3 0 20
CAE 78 1 0 8
CAl FC 2 (o] 12
CAS 07 1 0 6
CcCL 02 1 0 5
CSA 06 1 0 5
DAD E8 3 0 28
DAE 68 1 0 1
DAl EC 2 0 15
DINT 04 1 o] 6
DLD B8 3 1 22
DLY: 8F 2 0 13-131593
HALT 00 2 0 8
IEN 05 1 0 6
ILD A8 3 1 22
JMP 90 2 0 11
JNZ 9C 2 0 9, 11 for Jump
JP 94 2 0 9, 11 for Jump
Jz 98 2 0 9, 11 for Jump
LD co 3 0 18
LDE 40 1 0 6
LDI c4 2 0 10
NOP 08 1 0 5
OR D8 3 0 18
ORE 58 1 0 6
ORI DbC 2 0 10
RR 1E 1 0 5
RRL 1F 1 0 5
SCL 03 1 0 5
S10 19 1 0 L)
SR 1C 1 0 5
SRL 1D 1 o] L3
ST cs 2 1 18
XAE 01 1 0 7
XOR EO 3 0 18
XPAH 34 1 [4] 8
XPAL 30 1 0 8
XPPC 3C 1 0 7
XRE 60 1 0 6
XRI E4 2 0 10

10

ptr

Base Code Modifier

Op Code = Base + ptr

Op

Op Code

19

ic
10
1E
1F

Op

Op Code

02

828828

OPCODE INDEX OF INSTRUCTIONS

Assembler :

Opcode | Mnemonic | Format Operation
00 HALT Pulse H-flag
01 XAE Exchange AC and Extension
02 CcL Clear Carry/Link
03 SCL Set Carry/Link
04 DINT Disable Interrupts
05 IEN Enable Interrupts
06 CSA Copy Status to AC
07 CAS Copy AC to Status
08 NOP No Operation
19 Sio Serial Input/Output
16 SR Shift Right
1D SRL Shift Right with CY/L
1E RR Rotate Right
1F RRL Rotate Right with CY/L
30 XPAL ptr Exchange Pointer Low
34 XPAH ptr Exchange Pointer High
3C XPPC ptr Exchange Pointer with PC
40 LDE Load from Extension
50 ANE AND Extension
58 ORE OR Extension
60 XRE Exclusive-OR Extension
68 DAE Decimal Add Extension
70 ADE Add Extension *
78 CAE Complement and Add Extension
8F DLY disp Delay
90 JMP disp(ptr) |Jump
94 JP disp(ptr) | Jump If Positive
98 Jz disp(ptr) |Jump If Zero
ac IJNZ disp(ptr) |Jump If Not Zero
A8 ILD disp(ptr) Increment and Load
B8 DLD disp(ptr) Decrement and Load
co LD @disp(ptr) | Load
c4 LDI data Load Immediate
cs ST @disp(ptr) | Store
DO AND @disp(ptr) | AND
D4 ANI data AND Immediate
D8 OR @disp(ptr) [OR
DC ORI data OR Immediate
EO XOR @disp(ptr) | Exclusive-OR
E4 XRI data Exclusive-OR Immediate
E8 DAD @disp(ptr) | Decimal Add
EC DAI data Decimal Add Immediate
FO ADD @disp(ptr) | Add
F4 ADI data Add Immediate
F8 CAD @disp(ptr) | Complement and Add

u \data Complement and Add Immediate

Ijmsued;

asejuaqug
19puaosay

adey
squod
|euog

ano
uy

—

Iy
2
L1
0
! g,
3 5
: <
- Y
5
3
>
> o= [
T po2 4 oo
| ¥] < m
2% al "I s]
z b pI = o [<
0 So T € 3
1 %9 73 ® = 0| lo
= 3 0) o
n a 1 3 b -
l - 5 1
G
(1]
o 0
-'
> =
0 bi|
o m
1)
m g [4)
o : [E3[;
1]
¢ Il
g E 3 g -~ 0<
0 S
0] 2ah D] 07
2 —> ° 230 9%’% o
0 N 3 92 33 x g0
- iy 5
' g A i |
e 4 0 a 3lee L2 0
o) A J
3) o
: g
0 —> SR g
s I n v N=
FE_I7 3 €I
2 2 @ gm
= & g °
N 3 |
N 3 <
< @ !
4
NRST e _ﬁ
£ READ
CS1=——>1 WRITE PORT
M/i0 ——=] CONTROL ouUTPUT A
LOGIC DEFINITION
NWDS e REGISTER ==
NRDS e A
0DE
DEFINITION
__ﬁ- REGISTER &
HANDSHAKE
{ LOGIC
!
y
DATA
087- 080 fmmmml){ Bus =) T
BLFEER q DEFINITION
REGISTER
B PORT

BIT
OPERATIONS

AD6 - ADD

128x8 RAM

INS8154 128-by-8-Bit RAM 1/0

If the output data latch of PB 7 contains a 1 the interrupt
is enabled and the interrupt line of the INS 8060 will be driven
high. This line is the sense A line. It is worth mentioning
that this does not automatically generate an interrupt: the
MPU also has an interrupt enable flag which is held in the
status register.

When port A is read the interrupt is automatically removed
and IBF is brought low to indicate to the peripheral that
SOFTY is ready to accept more data.

Strobed Output,

In this mode those lines of port A defined as outputs are
constantly driven. When a data write has been performed to
port A a lTow going signal (OBF) is output on PB 6 to indicate
to the peripheral device that the output buffer is full and
data is waiting to be read.

The peripheral outputs a low going signal (ACK) to PB 7
when it reads the data from port A. Immediately upon ACK
going low SOFTY places OBF high again. When ACK goes high
an interrupt request is made and if the interrupt is enabled
(as defined for strobed input) an interrupt is generated
by placing sense A of the INS 8060 high. This interrupt
is automatically removed upon the next write to port A.

Strobed Output with Tri-State Control,

In this mode port A is normally high-impedance. It is
equal to the previous Strobed Output mode in all respects
but one: port A is only driven when ACK (PB7) is low.

An example of use n this mode would be when port A
is in the addressing space of another MPU and read as a
memory location.

INTERNA F_THE 1| RTS

SOFTY uses the 1/0 ports for certain internal functions.
The two lowest bits of port A are used as a latch to select
which page of information is shown on-screen when the INS
8060 releases the bus. The three highest lines of port A
and the 7 lowest lines of port B are used to scan the keymatrix
(in fact the internal program scans a bigger matrix of keys:
only 20 keys are physically present in the matrix. The other
keycodes can be experimentally derived by shorting individual
lines of port A and port B. A unique keyword will be written
to its position in the Status Line and may be read from this
location by the user's program)

The user need not consider SOFTY's internal use of the
ports or the keymatrix: so long as no key is pressed the
keyboard is effectively absent. But any program which
manipulates ports, their associated registers or the contents
of pointers 1 or 2 may make a return to firmware impossible.
The effect will be a constantly shifting display and no
response to keyboard inputs - except Reset. This fact does
not mean that the user's program is not working - in fact
it is certain that the MPU is doing exactly what it has been
instructed to do!

NOTE that all lines of port B have a 10X pullup to Vcc
on the SOFTY card and because of this port B is often the
better choice for input signals. Also note that all port B
lines except PB 7 are connected to an eight input NAND gate
the eighth input of which is driven by flag 2 of the INS 8060.
If the program places flag 2 high and all 7 bits of port
B (nothB 7) are also :igh then the MPU will immediately
suspend operations. The NAND gate output i
the MPU CONT input. ¢ S 8 el Ol

This function is necessary to force the INS 8060 to release
the bus so that the VDU can scan memory contents and present
a data picture. Flag 2 is placed high as a part of the keyscan
subroutine and operations are suspended until the next key
stroke. When CONT goes high flag 2 is reset by the program
and the keymatrix scanned to find the keyword. When the
keyword has been actioned the program returns to the keyscan
subroutine and the process repeats.

There is an exception to this rule: if the keyword was
a cursor key input flag 2 is not placed high. The program
introduces a delay and then 'falls-through' to give a cursor
repeat function. Repeats are counted in the Cursor Speed
Counter in the Status Line and when a whole 1ine has been
?raversed the delay is only introduced at the end of every
ine.

Ports are capable of considerable drive and will illuminate
LEDs. It follows that a seven-segment calculator display
of eight digits may be driven directly by matrixing. One port
can handle segments and the other digits. The output of the
display can be any alphanumeric symbols which the user can
devise from the seven segments and decimal point.

P e g el e

EXECUTION OF PROGRAMS BY THE INTERNAL MICROPROCESSOR,

Programs written for the INS 8060 are essentially
RELOCATABLE: they will run from any point in addressing
space. Only the values of the Pointers and the Program
Counter are absolute; it is usually a simple matter to
track down those instructions which assign values to the
Pointer Registers and modify them.

SOFTY may be used to action user programs in four
different ways:

L By placing the program in EPROM and substituting
it for the firmware EPROM.

2) By placing the program in EPROM and then using
$6 to run that program whilst the EPROM remains
in the programming socket.

3) By transferring the program to SCRATCHPAD with
$2 and $4 as a recursive subroutine. This makes
it available as a keyfunction $EX. (marked GOSUB
on the keyboard)

L) By running it directly in screen RAM with the benefit
of an Editing Facility. The key marked EX transfers
control to RAM using Pl and execution starts at
the location which follows the cursor. A breakpoint
may be set by inserting a 3D byte. When the program
reaches such a byte, which causes it to return to
a point in SOFTY's firmware, the contents of the
internal registers will be displayed in the STATUS
LINE. The registers displayed are P3, which by convention
is the subroutine pointer, the Accumulator, the Extension
Register and the Status Register. It may be found
helpful to label these location on-screen.

When execution is restarted no loss of status results
because the program first loads the registers from
their stored locations. The 3D byte should be substituted
for a normal program instruction and not appear in

the final program.

Certain assumptions are made for this editing feature
to work: Pl should not be reloaded or no return to
the editor is possible and P2 should not be reloaded
because it points to SCRATCHPAD and PORTS. The user
program may use P2 to access the PORTS and SCRATCHPAD.
| f the user program does reload Pl or P2 the user
program will still work but no return to the editor

is possible and therefore no meaningful readout will
be presented on the screen. It would be possible

for the user program to call subroutines from SOFTY
firmware using P3 ~ the KEYSCAN routine might prove
helpful and this is located at #033A.

DEMONSTR, N_PROGRAMS

Simple examples of programming follow. More complex
examples are given later as applications for SOFTY.

1) Decimal addition of two numbers:

08 No operation. (the first memory location is unused.)
ch Load immediate (the byte which follows)

55 Data

EC Decimal-add immediate

26 Data

c8 Store (the accumulator)

05 Displacement (meaning present location plus #05)

3D Breakpoint.

Return the cursor over the entry point (08 byte) and key
EX. Change the values of the two numbers (data) noting that
if the total exceeds 100 the carry flag in the Status Register
is set and added-in to the next calculation. Use this information
to write a program to add two four digit decimal numbers.

2) This is an example of an extra keyfunction - a user
program which runs in SCRATCHPAD.
Xy Any data byte you please.

Loop ASFE Increment and load the byte two memory locations

back (the one you just wrote in)

cbol Store the result at P1 (cursor) and autoiicrement P1.

35 Copy Pl high to Accumulator (to test if memory
is full. NOTE that Pl will not become #1000 when
it increments from #0FFF because of the internal
paging structure of the INS 8060. Pl becomes
#0000.)

9803 Jump out of this program if Pl high is zero.

35 Otherwise restore Pl high

90F6 Jump back to loop.

Step the cursor back to F6 byte and key $2. Using the
cursor keys extend the cursor to cover the whole block and
1ift it into SCRATCHPAD with $4. |f you can see the first
lTine of inverted video below the main screen contents you
will be able to see the program in SCRATCHPAD.

Te verify the existence of the program clear the screen
and key $5 which will write it back

Run the program with $EX. A count will be written into
screen memory starting from the location of the cursor at
the data byte which you specified.

PROGRAM 1 MICROP R

The INS 8060 has control lines which govern bus access
because the manufacturers realized that its special virtues
would often be required in multiprocessor applications.

A multiprocessor application is one in which address lines,
data lines and memory or peripheral devices are shared by
more than one microprocessor.

It is possible for the screen memory etc to be placed
in the addressing space of a microprocessor in an external
system under development. This provides such an external
system with SOFTY's facilities on a temporary basis for the
purpose of program development. Microsystems often do not
need a keyboard, VDU, cassette storage or an EPROM programmer
after the program development stage has been completed.

The system under development may have and usually will
have different—address locations for the data presented on
SOFTY's screen: that depends only on the manner in which
the address lines are connected.

Before any connection with an external system is attempted
the user should make sure that the operation of the address
selection logic, bus-access logic and control signals is
understood.

CONTROL SIGNALS - ACCESS TO THE ADDRESS BUS,

SOFTY has an internal 12 bit address bus which is
accessible by the INS 8060 and the VDU divider chain.
Apart from the most-significant bit which is pulled up
to Vcc when not driven internally, the address lines and
the data lines are also available to an external device
such as a microprocessor.

The two most significant bits of the address bus are
decoded to select which of the memory devices in addressing
space is enabled. As the most significant bit Is not
available externally it follows that an external microprocessor
cannot select SOFTY's own firmware or the RAM 1/0 but that
the WORKING RAM or an EPROM in the programming socket may be
selected.

An external device may use NBREQ and NENIN to gain
access to SOFTY's address bus. At the start of any read or
write cycle the INS 8060 examines the state of NBREQ which
is pulled to Vcc by a resistor, If any other device is
already holding NBREQ low bus access is denied. |f NBREQ
Is high the INS 8060 issues a bus request by pulling NBREQ
low. NBREQ is not then released until the memory transaction
has been completed. If NENIN is low or later goes low
bus access is granted and the INS 8060 places an address on
the bus and a read or write action is performed.

The NENOUT line is used internally to enable the VDU
scanner. NENOUT is low when the INS 8060 is not using the
bus (NBREQ high) and NENIN is low: at other times it is high.
It should now be apparent that if NENIN is high neither the

-INS 8060 nor the VDU scanner may use the bus - and therefore

an external device may gain bus access by placing NENIN high.

, If there is no external system NENIN should be wired
ow.

CONTROL SIGNALS - MEMORY SELECT LOGIC,

The decoding device which selects which of the memory
devices is enabled has an input NCARD which is available
externally. If NCARD is high none of the devices is
selected and the data bus remains in a high impedance state.
When SOFTY is acting as program memory for an external

system a memory-read or write is performed by placing
NCARD Tow.

, If there is no external system NCARD should be wired
ow.

When SOFTY's working RAM is selected the external system
may perform a data write by placing a low going pulse
on the NWRITE input.

NREAD Is normally pulled low but it may also be used
for memory selection by an external device which requires
such an input to memory.

If the external device pulls Al0 low the EPROM in the
program socket will be selected. |If Al0 remains high or
is unconnected the SCREEN RAM is selected. This enables the
development of programs in RAM and later transference to a
2708 or 2716 type EPROM; with an intermediate stage in the case
of the 2716 in which half the program is in RAM and the
other half is in EPROM.

= = £ AN INTERPRETIVE LANGUAGE.

SOFTY is intended for the development of programs which

will eventually become firmware - which is software residing As an example of the interpretive approach a language
in ROM and forming a part of a microsystem. is listed here in about 400 bytes. The language may
be of practical value to some SOFTY users. It is meant

During the gestation period of an infant system SOFTY to be run in EPROM (in, the programming socket) and called
will be connected in place of the firmware ROM via an umbilical by $6. &
cord terminated in a 24 pin DIL plug. The umbilical cord
is a ribbon cable which carries address, data and control The first instruction will be fetched from the first
slEnaliss screen location of RAM.

In the end, when the program is complete and working, There are 16 variables, each named by a single hex digit.
the header plug is removed and replaced by an EPROM device Variables 0 to 9 are assigned by the user during the course
programmed by SOFTY. Then the new system will work all by of the program. A and B are ports A and B. C and D are
itself. their respective ODRs. E is the mode definition register

associated with port A. F is a keyboard variable - if it

It is assumed that the infant system is completely is used the program will wait for an input byte of two
developed except for a lack of program memory. In fact it keystrokes from the keyboard.
is often possible to interchange software and hardware problems
en route to a final design. The reads and writes to ports A and B are parallel

operations. When single bit operations are required

A prototype of the new system should be constructed -such as those which enable interrupt when port A is
using some system which permits alteration - wire-wrap is used in the strobed mode - a machine code subroutine
an ideal prototyping method. must be called.

The use of EPROMS which have three voltage rails does Each instruction consists of two bytes. The variables
not commit a designer to using these devices in the end- are kept in the first line of SCRATCHPAD which is the
product. It is convenient to use EPROMS in the early stages first line of inverted video below the main screen contents.
because of the program revisions which may be required. .

No designer will ever commit to masked devices until he . The point of an interpretive language is that it
is absolutely sure of his program, is designed for the machine AS AN ENTITY. The instructions

are simple and powerful, like a super-machine-code.
At this present time the three rail device is cheaper
and much more easy to obtain than the single rail device.
Therefore is was chosen for use by SOFTY for reasons which

are practical rather than academic. : INST. OPERATION,

The designer is not restricted to designing systems OLLL Do machine language subroutine starting at
with only 2K bytes of firmware. This is the limit which address location defined by three hex digits.
one SOFTY can handle at any one time = but the system Subroutine must end In 3F byte.
can have any number of kilobytes already developed in
EPROM. 1vDD Let variable V contain data DD.

Program development is greatly simplified when SOFTY 2XVV Perform operation X on variables.

can be connected to the infant system with no loss of facility
on either side. The problems associated with bus-access should . i
=0 Skip next instruction if V1 = V2,

be given careful thought along these lines: If X
1) Can SOFTY and the infant system share the busses freely If X= 1 Skip If V1 does not equal V2.
with the employment of all the existing control signals?
If X =2 Skip if V1 > v2.
2) Can the control signals be connected to switches which
will give access to one side or the other? If X =3 AND V1, V2. (Result to V1)
3) If the external MPU has no input which will cause it If X =4 OR V1, V2. (Result to V1)
to release the busses, can an intermediate tri-state
buffer be incorporated into the infant prototype to ifX=5 EXOR V1, V2. (Result to V1)
simulate the same effect?
If X =6 DECIMAL-ADD V1, V2 (Result to V1)
L) Can SOFTY be physically disconnected from the infant
system whilst the test-program is being written and If X =17 ADD V1, V. (Result to V1)
edited?
5) Can program development proceed at a satisfactory rate If X =38 SUBTRACT (V1 - V2) (Result to V1)
by the recycling of a few EPROMS? (Remember that
selective writing is possible - but erasure must be
total)
30AA GOTO displacement byte AA. The displacement
is a normal signed hex byte for & program counter
ROACH M D 0P relative jump.
1) Any approach to program design should start with a statement 60DD Delay by data in tenths of a second. The data is
of the results the program is expected to achieve. The a hex quantity which gives a programned delay of
process by which the results may be achieved is then expressed up to 25 seconds.
as a sequence of c<teps. The steps themselves are then broken
down to a sequence of elemental 'building blocks' which each
may be expressed by a sequence of machine code instructions.
It is often helpful to write the program in a high-level
language even when there is no computer available to run it. JNTERPRETER LISTING.
The discipline involved in the writing makes later coding N
simpler.

There is a species of computer program known as a
‘compiler' which produces compiled code but it does not
produce the ultra-condensed code that a human compiler can

achiev?._ The computer program may be several times as long. gg g; gg g: 32 gg é} ga ;; g: gg gg g$;; ;g g;
A compiling approach should be chosen when memory space is F6 C4 06 CA OA C4 FF CA OC C2 OE CA Ad C2

limited (perhaps because the program must fit into a single
ROM) or when speed of execution is the main criterion.

2) An lnterPretivg approach is also possible. The microprocessor 08 C1 FF D4 OF 01 €5 01 CA 80 90 BF C4 02 60 9C
has many intricate instructions which manipulate bits. The 77 02 C5 01 1C 1C 1C 1C 01 C4 OF 60 9C 16 C4 00
microprocessor system can be considered as an entity and CA OF C4 09 37 C4 73 33 3F C2 OF 1E 1E 1E 1E CA
a language made up of machine code routines which manipulate OF 3F 00 00 C2 80 CA 10 C1 FF D4 OF 01 C4 OF 60
inputs and outputs. Such a language has a few, powerful 9C 16 C4 00 CA OF C4 09 37 C4 73 33 3F C2 OF 1E
instructions rather than a lot of fiddly ones. 1E 1E 1E CA QOF 3F 00 00 C2 80 CA 11 C1 FE D4 OF
9Cc Os c2 10 E2 11 9g :2 g5 02 90 95 21 gd 01 60

The inputs to an interpreter can be hexadecimal, ASCI | 9c 08 C2 10 E2 11 98 F2 90 EE C4 02 60 9C 0B 03

or even analogue inputs from the outside world which are C2 10 FA 11 94 E2 90 82 90 58 C4 03 60 9C 06 C2
converted into digital quantities. 10 D2 11 90 41 C4 04 60 9C 06 C2 10 DA 11 90 36
€4 05 60 9C 06 C2 10 E2 11 90 2B C4 06 60 9C 06

The keyboard instructions of SOFTY itself is an example 2 10 Ex'11'90 20 a4.06 €035 06 Gz 10 EA 11 90

of an interpretive language. Most small computers have
an interpretive language - such as BASIC,

SOFTY's program was compiled by hand in machine code FF FF FF FF FF FF FF FF. FF FF FF FF FF FF FF 08

g;ggmany pProgram-economies were made to fit it into a single C4 OF 01 3F C4 06 CA A0 C2 A1 E4 FF 01 8F 20 C2

. Another example of an interpretive language is given 01 90 F7 C4 98 CA 7E BA 7E 01 C4 92 60 98 D1 CA
in the appendix. 80 C2 A1 E4 FF 98 B8 02 C2 OF F4 07 CA OF 90 E7

DPOONOWVTAWN 2O0OTMMUOUQD>PORNONAWN 20

HARD COPY - ADDING A PRINTER TO SOFTY.

The listing of programs is a tedious task.
to make permanent records

A printer

is a useful facility. Printers

are generally expensive items costing many times the price
of SOFTY but a low-cost alternative has been devised.

The printer chosen was one which is widely available

on the surplus market:
Creed Type 7, which cost all of £25.
was thrown

an obsolete ex-GPO Baudot teletype
(A paper tape reader

in with the deal for good value) There are

plenty of these marvellous old machines available in good

working order.

Baudot

They were designed to last virtually forever.

is a 5bit code. It is transmitted to the teletype

serially at 50 baud which means that each bit is 20 milliseconds

in duration.

In an asynchronous transmission the 5 bits

are preceded by a start bit (low) and followed by 1 or more
stop bits (high) which define the beginning and the end of
a character.

As there are only 32 different combinations

a case

to letter case or vice-versa.
a shift character before each printed character:
is needed to change case.

it

in 5 bits
is sent to change from figure case
It is not necessary to send
only when

change character

Baudot has about 50 different printed characters plus

space,

An eight bit machine (like

with a
eighth
If the

or sign bit then figures can be

line-feed and carriage return.

SOFTY) can use Baudot code
already incorporated. The
be used to determine case.
the most significant bit
defined as positive and

start bit and a stop bit
bit is left over and can
case bit is chosen to be

letters negative.

To make the serial output from SOFTY's DIN socket

drive the teletype an

interfacing circuit is required.

The original used an optocoupler for good isolation driving

a high

voltage transistor type MJE 340. A relay could have

been used instead.

The program is meant to be placed in EPROM.

The EPROM

is Inserted into the programming socket and the program

called

Two programs are given. 1 T
op code and the destination of any jump instructions.

with $6 when a printout is required.

The first lists memory location,
This

is a partial dis-assembler which could be made into a full

dis-assembler by adding a printout of the op-codes.

The

second program lists data as at appears on screen and appends
a single digit line number at the end of each line.

PROGRAM LISTER,

The columns on the left were printed out by the
program itself on the teletype.

First P1, the cursor pointer, is reloaded from
the first two bytes in the Status Line.

Then the serial output is placed high. FF is
loaded and transferred to the extension register
And a serlal shift is made.

Delay to isolate the Start Bit

P3, the subroutine pointer is loaded with

the SENDWORD subroutine address.

Line

Flag 0 in the Status register is set and the
other bits are cleared.

A carriage return character is loaded
And the subroutine called which will
A line feed character is loaded

And sent.

The entry point to the subroutine is modified
to handle two digit hex numbers.

The last digit of Pl High is printed first

P1 high is copied to the E-reg and restored

send it.

Pl high is copied from the E-reg to Accumulator.
And the subroutine to print it is called.

The entry point to the subroutine is now modified
to handle the first digit of a byte.

And P1 low is copied to Acc, then to E-reg

Pl low is restored

Pl low is copied from E-reg to Acc.

The first digit of Pl low is printed.

The subroutine entry point is modified for
the second digit.

Pl low is copied and restored again.

And the second digit is printed.
A space character is loaded

A space is 'printed'

Another space.

Disp.The subroutine entry point is modified for first
digit of the byte. The byte to be sent is loaded
into the accumulator and then stored back in its
location. Because Flag 0 is high this will highlight
the location on-screen. The first digit is sent
the entry point modified and the second digit sent.
When the second load took place Pl autoincremented.
The status register is copied and -0 tested if it
is clear the result will be zero and the second

J54 byte will have been printed. (Jump to Test)
Read the op-code again. |If it is positive a

J10 jump is made to Line -- all single byte op codes
are positive. Zero is loaded and copied to Status.

T = PETE “har s = . ¢ =i

CAO

CA1

CA3

CA4

CA6
CA8
CA9
CAA
CAC
CAE
cBO
CB2
CcB4

CB5
cB7
cB8
CBA
CBC
CBD
CBE
cco
co1
cc3
cc4
cCh
ccy
cc9
CCA
coc
cch
CCF
cDo
cD2

appear and appends a line number.
similar to the last program.

by

Copy Acc to Status to clear Flag 0.

J3A Jump to Disp.

Test This routine will test the instruction to find
whether it is a jump. If it is a letter J followed
by the absolute destination address (last two digits)
are printed in the third column. First two spaces
are sent. Then the op-code is reloaded from P1
The instruction is masked and compared with 90
if a zero results the instruction is a jump

J10 If not zero a jump back to Line is made.

The Baudot letter J is loaded

And printed.

Now the absolute destination is calculated from
the dfsplacement and current value of Pl. The sub
-routine entry point is first modified for first
digit. Pl is copied to E-reg and restored.

The carry flag is cleared

The displacement is loaded

The E-reg (which contains P1 low) is complemented
and added to the accumulator. And stored in the
penultimate byte of the status line. The first
digit is sent. The second digit is then loaded
from the status line and printed (again after entry
point adjustment)

J10 Now the line is certainly finished and a jump is

(0) made back to Line.

(1) Locations C79 to C88 are the table of conversions

(2) from Hexadecimal digits to Baudot Figures/letters.
(3) The 1st bit is always low because it is the start bit
(L) The 7th bit is always high because it is the stop bit.
(5) The eighth bit determines case. This baffles the

(6) Tine printer which is used to op-codes and not

(7) tables. Therefore it prints the figures as single
(8) byte instructions and the letters as double byte

(9) instructions.

(AB)

(CD)

(EF)

SECOND This Is the entry point for the 53cond dlgit print.

J91 The first digit is masked off, Jump to Both.

FIRST This is the entry point for the first digit print
the first digit is rotated into the low four bits
of the accumulator

BOTH Now both digits are handled the same. The carry
bit is first cleared and an offset is added which
will permit the Baudot character to be found in
the table above. The sum is placed in E-reg and

JIA Read from the table (Disp #80 uses E-reg) Jump ENTER

EXIT This is the common exit from the subroutine

ENTRY This is the entry point. Using adjacent locations
for entry and exit saves reloading the subroutine
pointer. First the digit to be sent must be tested

JBD to find if it is the same case as the last-sent
character.

Word to be sent is placed in E-reg and copied

back to be EXORed with the word which was sent when

a case character was last sent. This word was

stored in the MODE FLAG (P2 7F) If a case change

Is required the result will be negative, If positive
a jump to sendword will be made. Otherwise the

word is stored in MODE FLAG and a start bit sent.
Delay 20 ms for start bit,

Load FD, place in E-reg and send bit.

Load the stored word from the MODE FLAG.

JB2 Jump to Figcase if positive.

Otherwise send letter case. As lettercase is all-high

JBA a single delay will suffice. Then jump LOADWORD.

FIGCASE Delay 40 ms
Sendbit
Delay 20 ms.

Sendbit
Delay 70 ms

LOADWORD Loadword to be sent from MODE FLAG.

SENDWORD Word to E-reg.
Send startbit
Delay 20 ms.

Send bit 1
Delay 20 ms.
Send bit 2
Delay 20 ms.
Send bit 3
Delay 20 ms.
Send bit 4
Delay 20 ms
Send bit 5
Delay 20 ms.
Send stop bit
Delay 30 ms.
J99 Jump to EXIT.

SCR R R

The program prints out the screen contents as they
The coding is quite
Again the effect is produced
the program operating on itself.

35
B¥
00
OF
40
FF
4c
CA
08
8F
3A 90

w
IS
OO~ AW 2O

Scratchpad Information
e e e R R DO

Cursor Peinter High Byte

Cursor Pointer Low Byte

<= Alternate Cursor High Byte

*

o
il
ti3 L 4

W - Alternate Cursor Low Byte
< Subroutine Pointer High Byte
< Subroutine Pointer Low Byte

< Accumulator Contents

- Extension Register Contents

== Status Register Contents

P Parallel Parity Word

< Matchbyte (Highlighted)
;Cursor Speed Counter

n - Keyword

‘L End Around Carry

- Hexadecimal Difference Between

Cursors
Mode Flag Etc.

